Methods and Algorithms for Scientific Computing

On Generation of Node Distributions for Meshless PDE Discretizations

Abstract

In this paper we present an algorithm that is able to generate locally regular node layouts with spatially variable nodal density for interiors of arbitrary domains in two, three, and higher dimensions. It is demonstrated that the generated node distributions are suitable to use in the RBF-FD method, which is demonstrated by solving thermo-fluid problem in two and three dimensions. Additionally, local minimal spacing guarantees are proven for both uniform and variable nodal densities. The presented algorithm has time complexity $O(N)$ to generate $N$ nodes with constant nodal spacing and $O(N \log N)$ to generate variably spaced nodes. Comparison with existing algorithms is performed in terms of node quality, time complexity, execution time, and PDE solution accuracy.

Keywords

  1. node generation algorithms
  2. variable density discretizations
  3. meshless methods for PDEs
  4. RBF-FD

MSC codes

  1. 65D99
  2. 65N99
  3. 65Y20
  4. 68Q25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Balzer, T. Schlömer, and O. Deussen, Capacity-constrained point distributions: A variant of Lloyd's method, ACM Trans. Graphics, 28 (2009), https://doi.org/10.1145/1531326.1531392.
2.
S. Bauer, Image number K7245-1, United States Department of Agriculture, https://www.ars.usda.gov/oc/images/photos/k7245-1/.
3.
V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs, J. Comput. Phys., 332 (2017), pp. 257--273, https://doi.org/10.1016/j.jcp.2016.12.008.
4.
J. L. Blanco and P. K. Rai, Nanoflann: A C++ header-only Fork of FLANN, a Library for Nearest Neighbor (NN) with KD-trees, 2014, https://github.com/jlblancoc/nanoflann.
5.
R. Bridson, Fast Poisson Disk Sampling in Arbitrary Dimensions, in Proceedings of SIGGRAPH sketches, 2007, p. 22, https://doi.org/10.1145/1278780.1278807.
6.
Y. Choi and S. Kim, Node generation scheme for meshfree method by Voronoi diagram and weighted bubble packing, in Proceedings of the Fifth U.S. National Congress on Computational Mechanics, Boulder, CO, 1999.
7.
R. L. Cook, Stochastic sampling in computer graphics, ACM Trans. Graphics, 5 (1986), pp. 51--72, https://doi.org/10.1145/7529.8927.
8.
H. Couturier and S. Sadat, Performance and accuracy of a meshless method for laminar natural convection, Numer. Heat Trans. B, 37 (2000), pp. 455--467, https://doi.org/10.1080/10407790050051146.
9.
G. de Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution, Internat. J. Numer. Methods Fluids, 3 (1983), pp. 249--264, https://doi.org/10.1002/fld.1650030305.
10.
D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote, On the bounding boxes obtained by principal component analysis, in Proceedings of the 22nd European Workshop on Computational Geometry, 2006, pp. 193--196.
11.
B. Fornberg and N. Flyer, Fast generation of 2-D node distributions for mesh-free PDE discretizations, Comput. Math. Appl., 69 (2015), pp. 531--544, https://doi.org/10.1016/j.camwa.2015.01.009.
12.
B. Fornberg and N. Flyer, A Primer on Radial Basis Functions with Applications to the Geosciences, SIAM, Philadelphia, 2015, https://doi.org/10.1137/1.9781611974041.
13.
B. Fornberg and N. Flyer, Solving PDEs with radial basis functions, Acta Numer., 24 (2015), pp. 215--258, https://doi.org/10.1017/S0962492914000130.
14.
T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass Transf., 34 (1991), pp. 1543--1557, https://doi.org/10.1016/0017-9310(91)90295-p.
15.
A. Golbabai and E. Mohebianfar, A new method for evaluating options based on multiquadric RBF-FD method, Appl. Math. Comput., 308 (2017), pp. 130--141, https://doi.org/10.1016/j.amc.2017.03.019.
16.
G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.
17.
D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Not. AMS, 51 (2004), pp. 1186--1194.
18.
I. Jolliffe, Principal Component Analysis, 2nd ed., Springer Ser. Statist., Springer, New York, 2011, https://doi.org/10.1007/978-3-642-04898-2_455.
19.
G. Kosec, A local numerical solution of a fluid-flow problem on an irregular domain, Adv. Eng. Softw., 120 (2018), pp. 36--44, https://doi.org/10.1016/j.advengsoft.2016.05.010.
20.
G. Kosec and B. Šarler, Solution of thermo-fluid problems by collocation with local pressure correction, Internat. J. Numer. Methods Heat Fluid Flow, 18 (2008), pp. 868--882, https://doi.org/10.1108/09615530810898999.
21.
G. Kosec and J. Slak, RBF-FD based dynamic thermal rating of overhead power lines, in Advances in Fluid Mechanics XII, WIT Trans. Eng. Sci. 120, WIT Press, Southampton, 2018, pp. 255--262, https://doi.org/10.2495/afm180261.
22.
X.-Y. Li, S.-H. Teng, and A. Ungor, Point placement for meshless methods using sphere packing and advancing front methods, in Proceedings of ICCES'00, Los Angeles, CA, 2000.
23.
G.-R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton, FL, 2002, https://doi.org/10.1201/9781420040586.
24.
Y. Liu, Y. Nie, W. Zhang, and L. Wang, Node placement method by bubble simulation and its application, CMES Comput. Model. Eng. Sci., 55 (2010), pp. 89--110, https://doi.org/10.3970/cmes.2010.055.089.
25.
R. Löhner and E. On͂ate, A general advancing front technique for filling space with arbitrary objects, Internat. J. Numer. Methods Engrg., 61 (2004), pp. 1977--1991, https://doi.org/10.1002/nme.1068.
26.
B. Mavrič and B. Šarler, Local radial basis function collocation method for linear thermo-elasticity in two dimensions, Internat. J. Numer. Methods Heat Fluid Flow, 25 (2015), pp. 1488--1510, https://doi.org/10.1108/hff-11-2014-0359.
28.
S. A. Mitchell, A. Rand, M. S. Ebeida, and C. Bajaj, Variable radii Poisson-disk sampling, extended version, in Proceedings of the 24th Canadian Conference on Computational Geometry, Vol. 5, 2012.
29.
A. W. Moore, An Introductory Tutorial on KD-trees, Ph.D. thesis, University of Cambridge, Cambridge, 1991, https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf.
30.
P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), pp. 329--345, https://doi.org/10.1137/s0036144503429121.
31.
K. Reuther, B. Sarler, and M. Rettenmayr, Solving diffusion problems on an unstructured, amorphous grid by a meshless method, Int. J. Therm. Sci., 51 (2012), pp. 16--22, https://doi.org/10.1016/j.ijthermalsci.2011.08.017.
32.
V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for meshfree discretizations on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. 2584--2608, https://doi.org/10.1137/17m114090x.
33.
J. Slak and G. Kosec, Standalone Implementation of the Proposed Node Placing Algorithm, http://e6.ijs.si/medusa/static/PNP.zip.
34.
J. Slak and G. Kosec, Fast generation of variable density node distributions for mesh-free methods, in WIT Trans. Eng. Sci., 122 (2018), pp. 163--173, https://doi.org/10.2495/be410151.
35.
J. Slak and G. Kosec, Refined meshless local strong form solution of Cauchy--Navier equation on an irregular domain, Eng. Anal. Bound. Elem., 100 (2018) pp.3--13, https://doi.org/10.1016/j.enganabound.2018.01.001.
36.
J. Slak and G. Kosec, Adaptive radial basis function-generated finite differences method for contact problems, Internat. J. Numer. Methods Engrg., 2019, https://doi.org/10.1002/nme.6067.
37.
P. Wang, Y. Zhang, and Z. Guo, Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers, Int. J. Heat Mass Transf., 113 (2017), pp. 217--228, https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3202 - A3229
ISSN (online): 1095-7197

History

Submitted: 10 December 2018
Accepted: 19 August 2019
Published online: 15 October 2019

Keywords

  1. node generation algorithms
  2. variable density discretizations
  3. meshless methods for PDEs
  4. RBF-FD

MSC codes

  1. 65D99
  2. 65N99
  3. 65Y20
  4. 68Q25

Authors

Affiliations

Funding Information

Research Foundation Flanders : G018916N

Funding Information

Young Researcher program : PR-08346

Funding Information

Javna Agencija za Raziskovalno Dejavnost RS https://doi.org/10.13039/501100004329 : P2-0095

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.