Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains

Abstract

Multilevel quadrature methods for parametric operator equations such as the multilevel (quasi--) Monte Carlo method resemble a sparse tensor product approximation between the spatial variable and the parameter. We employ this fact to reverse the multilevel quadrature method by applying differences of quadrature rules to finite element discretizations of increasing resolution. Besides being algorithmically more efficient if the underlying quadrature rules are nested, this way of performing the sparse tensor product approximation enables the easy use of nonnested and even adaptively refined finite element meshes. We moreover provide a rigorous error and regularity analysis addressing the variational crimes of using polygonal approximations of curved domains and numerical quadrature of the bilinear form. Our results facilitate the construction of efficient multilevel quadrature methods based on deterministic high order quadrature rules for the stochastic parameter. Numerical results in three spatial dimensions are provided to illustrate the approach.

Keywords

  1. parametric partial differential equations
  2. multilevel quadrature
  3. variational crimes

MSC codes

  1. 65N30
  2. 65D32
  3. 60H15
  4. 60H35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005--1034.
2.
I. Babuška, R. Tempone, and G. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800--825.
3.
A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123--161.
4.
J. Beck, R. Tempone, F. Nobile, and L. Tamellini, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, Math. Models Methods Appl. Sci., 22 (2012), 1250023.
5.
D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd ed., Cambridge University Press, Cambridge, UK, 2001.
6.
S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
7.
H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147--269.
8.
J. Charrier, R. Scheichl, and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Numer. Anal., 51 (2013), pp. 322--352.
9.
A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best $N$-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615--646.
10.
A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Anal. Appl., 09 (2011), pp. 11--47.
11.
J. Dick, R. N. Gantner, Q. T. Le Gia, and C. Schwab, Multilevel higher-order quasi-Monte Carlo Bayesian estimation, Math. Models Methods Appl. Sci., 27 (2017), pp. 953--995.
12.
O. Ernst and B. Sprungk, Stochastic collocation for elliptic PDEs with random data: The lognormal case, in Sparse Grids and Applications---Munich 2012, J. Garcke and D. Pflüger, eds., Springer, New York, 2014, pp. 29--53.
13.
P. Frauenfelder, C. Schwab, and R. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205--228.
14.
T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms, 18 (1998), pp. 209--232.
15.
T. Gerstner and S. Heinz, Dimension- and time-adaptive multilevel Monte Carlo methods, in Sparse Grids and Applications, J. Garcke and M. Griebel, eds., Lect. Notes Comput. Sci. Eng. 88, Springer, New York, 2012, pp. 107--120.
16.
R. Ghanem and P. Spanos, Stochastic Finite Elements. A Spectral Approach, Springer, New York, 1991.
17.
M. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617.
18.
M. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259--328.
19.
M. Giles and B. Waterhouse, Multilevel quasi-Monte Carlo path simulation, Radon Ser. Comput. Appl. Math., 8 (2009), pp. 1--18.
20.
M. Griebel and H. Harbrecht, On the construction of sparse tensor product spaces, Math. Comp., 82 (2013), pp. 975--994.
21.
A.-L. Haji-Ali, H. Harbrecht, M. Peters, and M. Siebenmorgen, Novel results for the anisotropic sparse grid quadrature, J. Complexity, 47 (2018), pp. 62--85.
22.
A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity, Found. Comput. Math., 16 (2016), pp. 1555--1605.
23.
A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, Optimization of mesh hierarchies in multilevel Monte Carlo samplers, Stoch. Partial Differ. Equ. Anal. Comput., 4 (2016), pp. 76--112.
24.
J. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2 (1960), pp. 84--90.
25.
H. Harbrecht, M. Peters, and M. Siebenmorgen, On multilevel quadrature for elliptic stochastic partial differential equations, in Sparse Grids and Applications, J. Garcke and M. Griebel, eds., Lect. Notes Comput. Sci. Eng. 88, Springer, New York, 2012, pp. 161--179.
26.
H. Harbrecht, M. Peters, and M. Siebenmorgen, Efficient approximation of random fields for numerical applications, Numer. Linear Algebra Appl., 22 (2015), pp. 596--617.
27.
H. Harbrecht, M. Peters, and M. Siebenmorgen, Analysis of the domain mapping method for elliptic diffusion problems on random domains, Numer. Math., 134 (2016), pp. 823--856.
28.
H. Harbrecht, M. Peters, and M. Siebenmorgen, Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 520--551.
29.
H. Harbrecht, M. Peters, and M. Siebenmorgen, On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion, Math. Comp., 86 (2017), pp. 771--797.
30.
S. Heinrich, The multilevel method of dependent tests, in Advances in Stochastic Simulation Methods (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser, Boston, MA, 2000, pp. 47--61.
31.
S. Heinrich, Multilevel Monte Carlo Methods, in Large-Scale Scientific Computing, Lecture Notes in Comput. Sci. 2179, Springer, New York, 2001, pp. 58--67.
32.
E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, AMS, Providence, RI, 1957.
33.
V. Hoang and C. Schwab, $N$-term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs, Math. Models Methods Appl. Sci., 4 (2014), p. 797--826.
34.
F. Kuo, C. Schwab, and I. Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, Found. Comput. Math., 15 (2015), pp. 411--449.
35.
M. Loève, Probability Theory, 4th ed., Grad. Texts in Math. 45, Springer, New York, 1977.
36.
H. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1295--1331.
37.
H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conf. Ser. in Appl. Math. 63, SIAM, Philadelphia, 1992.
38.
E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math., 75 (1996), pp. 79--97.
39.
C. Schwab and R. Todor, Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217 (2006), pp. 100--122.
40.
M. Siebenmorgen, Quadrature Methods for Elliptic PDEs with Random Diffusion, Ph.D. thesis, Faculty of Science, University of Basel, 2015.
41.
A. Teckentrup, R. Scheichl, M. Giles, and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients, Numer. Math., 125 (2013), pp. 569--600.
42.
A. L. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger, A multilevel stochastic collocation method for partial differential equations with random input data, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1046--1074.
43.
R. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal., 27 (2007), pp. 232--261.
44.
X. Wang, A constructive approach to strong tractability using quasi-Monte Carlo algorithms, J. Complexity, 18 (2002), pp. 683--701.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 684 - 705
ISSN (online): 1095-7170

History

Submitted: 2 January 2019
Accepted: 14 November 2019
Published online: 20 February 2020

Keywords

  1. parametric partial differential equations
  2. multilevel quadrature
  3. variational crimes

MSC codes

  1. 65N30
  2. 65D32
  3. 60H15
  4. 60H35

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media