A Reformulated Krein Matrix for Star-Even Polynomial Operators with Applications

In its original formulation the Krein matrix was used to locate the spectrum of first-order star-even polynomial operators where both operator coefficients are nonsingular. Such operators naturally arise when considering first-order-in-time Hamiltonian PDEs. Herein the matrix is reformulated to allow for operator coefficients with nontrivial kernel. Moreover, it is extended to allow for the study of the spectral problem associated with quadratic star-even operators, which arise when considering the spectral problem associated with second-order-in-time Hamiltonian PDEs. In conjunction with the Hamiltonian-Krein index (HKI) the Krein matrix is used to study two problems: conditions leading to Hamiltonian-Hopf bifurcations for small spatially periodic waves, and the location and Krein signature of small eigenvalues associated with, e.g., $n$-pulse problems. For the first case we consider in detail a first-order-in-time fifth-order KdV-like equation. In the latter case we use a combination of Lin's method, the HKI, and the Krein matrix to study the spectrum associated with $n$-pulses for a second-order-in-time Hamiltonian system which is used to model the dynamics of a suspension bridge.

  • 1.  J. Alexander R. Gardner and  C. Jones , A topological invariant arising in the stability of travelling waves , J. Reine Angew. Math. , 410 ( 1990 ), pp. 167 -- 212 . ISIGoogle Scholar

  • 2.  J. Bronski M. Johnson and  T. Kapitula , An instability index theory for quadratic pencils and applications , Comm. Math. Phys. , 327 ( 2014 ), pp. 521 -- 550 . CrossrefISIGoogle Scholar

  • 3.  C. Buzzi and  J. Lamb , Reversible Hamiltonian Liapunov center theorem , Discrete Contin. Dyn. Syst. Ser. B , 5 ( 2005 ), pp. 51 -- 66 . ISIGoogle Scholar

  • 4.  J. Chamard J. Otta and  D. Lloyd , Computation of minimum energy paths for quasi-linear problems , J. Sci. Comput. , 49 ( 2011 ), pp. 180 -- 194 . CrossrefISIGoogle Scholar

  • 5.  A. Champneys and  M. Groves , A global investigation of solitary-wave solutions to a two-parameter model for water waves , J. Fluid Mech. , 342 ( 1997 ), pp. 199 -- 229 . CrossrefISIGoogle Scholar

  • 6.  Y. Chen and  P. McKenna , Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations , J. Differential Equations , 136 ( 1997 ), pp. 325 -- 355 . CrossrefISIGoogle Scholar

  • 7.  W. Coppel , Dichotomies in Stability Theory , Springer , Berlin , 1978 . CrossrefGoogle Scholar

  • 8.  B. Deconinck and  T. Kapitula , On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations , in Hamiltonian Partial Differential Equations and Applications , P. Guyenne, D. Nicholls, and C. Sulem, eds., Fields Inst. Commun. 75, Springer , New York, 2015 , pp. 285 -- 322 . Google Scholar

  • 9.  B. Deconinck and  O. Trichtchenko , High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs , Discrete Contin. Dyn. Syst. , 37 ( 2015 ), pp. 1323 -- 1358 . ISIGoogle Scholar

  • 10.  J. Evans N. Fenichel and  J. Feroe , Double impulse solutions in nerve axon equations , SIAM J. Appl. Math. , 42 ( 1982 ), pp. 219 - 234 . LinkISIGoogle Scholar

  • 11.  L. Evans , Partial Differential Equations , AMS , Providence , RI , 2010 . CrossrefGoogle Scholar

  • 12.  M. Grillakis J. Shatah and  W. Strauss , Stability theory of solitary waves in the presence of symmetry, I , J. Funct. Anal. , 74 ( 1987 ), pp. 160 -- 197 . CrossrefISIGoogle Scholar

  • 13.  S. Hammarling C. Munro and  F. Tisseur , An algorithm for the complete solution of quadratic eigenvalue problems , ACM Trans. Math. Software , 39 ( 2013 ), pp. 1 -- 19 . CrossrefISIGoogle Scholar

  • 14.  M. Hǎrǎguş and  G. Iooss , Local Bifurcations , Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer , New York, 2011 . Google Scholar

  • 15.  M. Hǎrǎguş and  T. Kapitula , On the spectra of periodic waves for infinite-dimensional Hamiltonian systems , Phys. D , 237 ( 2008 ), pp. 2649 -- 2671 . CrossrefISIGoogle Scholar

  • 16.  I. Ipsen and  R. Rehman , Perturbation bounds for determinants and characteristic polynomials , SIAM J. Matrix Anal. Appl. , 30 ( 2008 ), pp. 762 -- 776 . LinkISIGoogle Scholar

  • 17.  T. Kapitula The Krein and  Krein Krein oscillation theorem , Indiana U. Math. J. , 59 ( 2010 ), pp. 1245 -- 1276 . CrossrefISIGoogle Scholar

  • 18.  T. Kapitula E. Hibma H.-P. Kim and  J. Timkovich , Instability indices for matrix polynomials , Linear Algebra Appl. , 439 ( 2013 ), pp. 3412 -- 3434 . CrossrefISIGoogle Scholar

  • 19.  T. Kapitula P. Kevrekidis and  B. Sandstede , Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems , Phys. D , 195 ( 2004 ), pp. 263 -- 282 . CrossrefISIGoogle Scholar

  • 20.  T. Kapitula P. Kevrekidis and  B. Sandstede , Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems , Phys. D , 201 ( 2005 ), pp. 199 -- 201 . CrossrefISIGoogle Scholar

  • 21.  T. Kapitula P. Kevrekidis and  D. Yan , The Krein matrix: General theory and concrete applications in atomic Bose-Einstein condensates , SIAM J. Appl. Math. , 73 ( 2013 ), pp. 1368 -- 1395 . LinkISIGoogle Scholar

  • 22.  T. Kapitula and  K. Promislow , Stability indices for constrained self-adjoint operators , Proc. Amer. Math. Soc. , 140 ( 2012 ), pp. 865 -- 880 . CrossrefISIGoogle Scholar

  • 23.  T. Kapitula and  K. Promislow , Spectral and Dynamical Stability of Nonlinear Waves , Springer-Verlag , Berlin , 2013 . CrossrefGoogle Scholar

  • 24.  T. Kapitula and  A. Stefanov , A Hamiltonian-Krein (instability) index theory for KdV-like eigenvalue problems , Stud. Appl. Math. , 132 ( 2014 ), pp. 183 -- 211 . CrossrefISIGoogle Scholar

  • 25.  T. Kato , Perturbation Theory for Linear Operators , Springer-Verlag , Berlin , 1980 . Google Scholar

  • 26.  R. Kollár B. Deconinck and  O. Trichtchenko , Direct characterization of spectral stability of small--amplitude periodic waves in scalar Hamiltonian problems via dispersion relation . SIAM J. Math. Anal. , 51 ( 2019 ), pp. 3145 -- 3169 . LinkISIGoogle Scholar

  • 27.  R. Kollár and  P. Miller , Graphical Krein signature theory and Evans-Krein functions , SIAM Rev. , 56 ( 2014 ), pp. 73 -- 123 . LinkISIGoogle Scholar

  • 28.  Y. Li and  K. Promislow , Structural stability of non-ground state traveling waves of coupled nonlinear Schrödinger equations , Phys. D , 124 ( 1998 ), pp. 137 -- 165 . CrossrefISIGoogle Scholar

  • 29.  P. McKenna and  W. Walter , Travelling waves in a suspension bridge , SIAM J. Appl. Math. , 50 ( 1990 ), pp. 703 -- 715 . LinkISIGoogle Scholar

  • 30.  K. Palmer , Exponential transversal dichotomies and homoclinic points J . Differential Equations , 55 ( 1984 ), pp. 225 - 256 CrossrefISIGoogle Scholar

  • 31.  D. Pelinovsky , Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations , Proc. A , 461 ( 2005 ), pp. 783 -- 812 . Google Scholar

  • 32.  D. Pelinovsky , Spectral stability of nonlinear waves in KdV-type evolution equations , in Nonlinear Physical Systems: Spectral Analysis, Stability, and Bifurcations , O. Kirillov and D. Pelinovsky, eds., Wiley-ISTE , New York , 2014 , pp. 377 -- 400 . CrossrefGoogle Scholar

  • 33.  B. Sandstede , Verzweigungstheorie homokliner Verdopplungen , Ph.D. thesis, University of Stuttgart , 1993 . Google Scholar

  • 34.  B. Sandstede , Instability of localized buckling modes in a one-dimensional strut model , Philos. Trans. A , 355 ( 1997 ), pp. 2083 -- 2097 . CrossrefGoogle Scholar

  • 35.  B. Sandstede , Stability of multiple-pulse solutions , Trans. Amer. Math. Soc. , 350 ( 1998 ), pp. 429 -- 472 . CrossrefISIGoogle Scholar

  • 36.  B. Sandstede , Homoclinic flip bifurcations in conservative reversible systems , in Recent Trends in Dynamical Systems , Springer , 2013 , pp. 107 -- 124 . CrossrefGoogle Scholar

  • 37.  B. Sandstede and  A. Scheel , Relative Morse indices, Fredholm indices, and group velocities , Discrete Contin. Dyn. Syst. , 20 ( 2008 ), pp. 139 -- 158 . CrossrefISIGoogle Scholar

  • 38.  D. Smets . van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations , J. Differential Equations , 184 ( 2002 ), pp. 78 -- 96 . CrossrefISIGoogle Scholar

  • 39.  O. Trichtchenko B. Deconinck and  R. Kollár , Stability of periodic traveling waves solutions to the Kawahara equation , SIAM J. Appl. Dyn. , 17 ( 2018 ), pp. 2761 -- 2783 . LinkISIGoogle Scholar

  • 40.  J. van den Berg M. Breden J.-P. Lessard and  M. Murray , Continuation of homoclinic orbits in the suspension bridge equation: A computer-assisted proof , J. Differential Equations , 264 ( 2018 ), pp. 3086 -- 3130 . CrossrefISIGoogle Scholar

  • 41.  V. Vougalter and  D. Pelinovsky , Eigenvalues of zero energy in the linearized NLS problem , J. Math. Phys. , 47 ( 2006 ), 062701 . CrossrefISIGoogle Scholar

  • 42.  A. Weinstein , Normal modes for nonlinear Hamiltonian systems , Invent. Math. , 20 ( 1973 ), pp. 47 -- 57 . CrossrefISIGoogle Scholar

  • 43.  K. Yosida , Functional Analysis , Springer-Verlag , Berlin , 1965 . CrossrefGoogle Scholar