Almost Envy-Freeness with General Valuations

The goal of fair division is to distribute resources among competing players in a “fair" way. Envy-freeness is the most extensively studied fairness notion in fair division. Envy-free allocations do not always exist with indivisible goods, motivating the study of relaxed versions of envy-freeness. We study the envy-freeness up to any good (EFX) property, which states that no player prefers the bundle of another player following the removal of any single good, and prove the first general results about this property. We use the leximin solution to show existence of EFX allocations in several contexts, sometimes in conjunction with Pareto optimality. For two players with valuations obeying a mild assumption, one of these results provides stronger guarantees than the currently deployed algorithm on Spliddit, a popular fair division website. Unfortunately, finding the leximin solution can require exponential time. We show that this is necessary by proving an exponential lower bound on the number of value queries needed to identify an EFX allocation, even for two players with identical valuations. We consider both additive and more general valuations, and our work suggests that there is a rich landscape of problems to explore in the fair division of indivisible goods with different classes of player valuations.

  • 1.  H. Aziz S. Gaspers S. Mackenzie and  T. Walsh , Fair assignment of indivisible objects under ordinal preferences , Artificial Intelligence, 227(C) ( 2015 ), pp. 71 -- 92 . CrossrefGoogle Scholar

  • 2.  A. Bogomolnaia and  H. Moulin , Random matching under dichotomous preferences , Econometrica , 72 ( 2004 ), pp. 257 -- 279 . CrossrefISIGoogle Scholar

  • 3.  S. Bouveret and  J. Lang , Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity , J. Artificial Intelligence Res. , 32 ( 2008 ), pp. 525 -- 564 . CrossrefISIGoogle Scholar

  • 4.  S. J. Brams D. M. Kilgour and  C. Klamler , Maximin envy-free division of indivisible items , Group Decision Negotiation , 26 ( 2017 ), pp. 115 -- 131 . CrossrefISIGoogle Scholar

  • 5.  S. J. Brams and  A. D. Taylor , Fair Division: From Cake-Cutting to Dispute Resolution , Cambridge University Press , Cambridge, UK , 1996 . Google Scholar

  • 6.  F. Brandt V. Conitzer U. Endriss J. Lang and  A. D. Procaccia , Handbook of Computational Social Choice , Cambridge University Press , Cambridge, UK , 2016 . Google Scholar

  • 7.  E. Budish , The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes , J. Political Econ. , 119 ( 2011 ), pp. 1061 -- 1103 . CrossrefISIGoogle Scholar

  • 8.  E. Budish G. P. Cachon J. B. Kessler and  A. Othman , Course match: A large-scale implementation of approximate competitive equilibrium from equal incomes for combinatorial allocation , Oper. Res. , 65 ( 2016 ), pp. 314 -- 336 . CrossrefISIGoogle Scholar

  • 9.  E. Budish Y.-K. Che F. Kojima and  P. Milgrom , Designing random allocation mechanisms: Theory and applications , Amer. Econom. Rev. , 103 ( 2013 ), pp. 585 -- 623 . CrossrefISIGoogle Scholar

  • 10.  I. Caragiannis N. Gravin and  X. Huang , Envy-freeness up to any item with high Nash welfare: The virtue of donating items , in Proceedings of the 2019 ACM Conference on Economics and Computation, ACM , New York , 2019 , pp. 527 -- 545 . Google Scholar

  • 11.  I. Caragiannis D. Kurokawa H. Moulin A. D. Procaccia N. Shah and  J. Wang , The unreasonable fairness of maximum Nash welfare , in Proceedings of the 2016 ACM Conference on Economics and Computation , 2016 , pp. 305 -- 322 . Google Scholar

  • 12.  H. Chan J. Chen B. Li and  X. Wu , Maximin-aware allocations of indivisible goods , in Proceedings of the 18th International Conference on Autonomous Agents and Multi Agent Systems, International Foundation for Autonomous Agents and Multiagent Systems , Richland, SC , 2019 , pp. 1871 -- 1873 . Google Scholar

  • 13.  B. R. Chaudhury T. Kavitha K. Mehlhorn and  A. Sgouritsa , A little charity guarantees almost envy-freeness , in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM , 2020 , pp. 2658 -- 2672 . Google Scholar

  • 14.  G. de Clippel H. Moulin and  N. Tideman , Impartial division of a dollar , J. Economic Theory , 139 ( 2008 ) pp. 176 -- 191 . CrossrefISIGoogle Scholar

  • 15.  J. P. Dickerson J. Goldman J. Karp A. D. Procaccia and  T. Sandholm , The computational rise and fall of fairness , in Proceedings of the 28th AAAI Conference on Artificial Intelligence , 2014 , pp. 1405 -- 1411 . Google Scholar

  • 16.  H. Dinh and  A. Russell , Quantum and randomized lower bounds for local search on vertex-transitive graphs , Quantum Inf. Comput. , 10 ( 2010 ), pp. 636 -- 652 . ISIGoogle Scholar

  • 17.  S. Dobzinski H. Fu and  R. Kleinberg , On the complexity of computing an equilibrium in combinatorial auctions , in Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms , 2015 , pp. 110 -- 122 . Google Scholar

  • 18.  S. Dobzinski and  J. Vondrák , Communication complexity of combinatorial auctions with submodular valuations , in Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms , 2013 , pp. 1205 -- 1215 . Google Scholar

  • 19.  Y. Gal M. Mash A. D. Procaccia and  Y. Zick , Which is the fairest (rent division) of them all? , in Proceedings of the 2016 ACM Conference on Economics and Computation , 2016 , pp. 67 -- 84 . Google Scholar

  • 20.  J. Goldman and  A. D. Procaccia , Spliddit: Unleashing fair division algorithms , SIGecom Exch. , 13 ( 2015 ), pp. 41 -- 46 . CrossrefGoogle Scholar

  • 21.  M. Kaneko and  K. Nakamura , The Nash social welfare function , Econometrica , 47 ( 1979 ), pp. 423 -- 435 . CrossrefISIGoogle Scholar

  • 22.  B. Lehmann D. Lehmann and  N. Nisan , Combinatorial auctions with decreasing marginal utilities , in Proceedings of the 3rd ACM Conference on Electronic Commerce, ACM , New York , 2001 , pp. 18 -- 28 . Google Scholar

  • 23.  R. Lipton E. Markakis E. Mossel and  A. Saberi , On approximately fair allocations of indivisible goods , in Proceedings of the 5th ACM Conference on Electronic Commerce , 2004 , pp. 125 -- 131 . Google Scholar

  • 24.  D. C. Llewellyn C. Tovey and  M. Trick , Local optimization on graphs , Discrete Appl. Math. , 23 ( 1989 ), pp. 157 -- 178 . CrossrefISIGoogle Scholar

  • 25.  M. Matsumoto and  N. Tokushige , The exact bound in the Erdös-Ko-Rado theorem for cross-intersecting families , J. Combin. Theory Seri. A , 52 ( 1989 ), pp. 90 -- 97 . CrossrefISIGoogle Scholar

  • 26.  H. Moulin , Fair Division and Collective Welfare , MIT Press , Cambridge, MA , 2003 . Google Scholar

  • 27.  J. Nash and  The Bargaining Problem , Econometrica , 18 ( 1950 ), pp. 155 -- 162 . CrossrefISIGoogle Scholar

  • 28.  H. Oh A. D. Procaccia and  W. Suksompong , Fairly allocating many goods with few queries , in Proceedings of the 33rd AAAI Conference on Artificial Intelligence , 2019 , pp. 2141 -- 2148 . Google Scholar

  • 29.  E. A. Pazner and  D. Schmeidler , Egalitarian equivalent allocations: A new concept of economic equity , Quart. J. Economi. , 92 ( 1978 ), pp. 671 -- 687 . CrossrefISIGoogle Scholar

  • 30.  B. Plaut and  T. Roughgarden , Communication complexity of discrete fair division , In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms , 2019 . Google Scholar

  • 31.  S. Ramezani and  U. Endriss , Nash social welfare in multiagent resource allocation , in Proceedings of the 12th Annual Conference on Agent-Mediated Electronic Commerce , 2010 . Google Scholar

  • 32.  J. Rawls , A Theory of Justice , Belknap Press , Cambridge, MA , 1971 . Google Scholar

  • 33.  A. Sen , Welfare inequalities and Rawlsian axiomatics , Theory Decision , 7 ( 1976 ), pp. 243 -- 262 . CrossrefISIGoogle Scholar

  • 34.  A. Sen , Social choice theory: A re-examination , Econometrica , 45 ( 1977 ), pp. 53 -- 89 . CrossrefISIGoogle Scholar

  • 35.  M. Valencia-Pabon . Vera, On the diameter of Kneser graphs , Discrete Math. , 305 ( 2005 ), pp. 383 -- 385 . CrossrefISIGoogle Scholar

  • 36.  S. Zheng , The Vertex Isoperimetric Problem on Kneser Graphs , Research project , Massachusetts Institute of Technology , Cambridge , 2015 . Google Scholar