Low-Rank Tensor Approximation for Chebyshev Interpolation in Parametric Option Pricing

Treating high dimensionality is one of the main challenges in the development of computational methods for solving problems arising in finance, where tasks such as pricing, calibration, and risk assessment need to be performed accurately and in real-time. Among the growing literature addressing this problem, Gass et al. [Finance Stoch., 22 (2018), pp. 701--731] propose a complexity reduction technique for parametric option pricing based on Chebyshev interpolation. As the number of parameters increases, however, this method is affected by the curse of dimensionality. In this article, we extend this approach to treat high-dimensional problems: Additionally, exploiting low-rank structures allows us to consider parameter spaces of high dimensions. The core of our method is to express the tensorized interpolation in the tensor train format and to develop an efficient way, based on tensor completion, to approximate the interpolation coefficients. We apply the new method to two model problems: American option pricing in the Heston model and European basket option pricing in the multidimensional Black--Scholes model. In these examples, we treat parameter spaces of dimensions up to 25. The numerical results confirm the low-rank structure of these problems and the effectiveness of our method compared to advanced techniques.

  • 1.  M. Bachmayr and  A. Cohen , Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , Math. Comp. , 86 ( 2017 ), pp. 701 -- 724 , https://doi.org/10.1090/mcom/3132. CrossrefISIGoogle Scholar

  • 2.  B. W. Bader and  T. G. Kolda , Algorithm 862: MATLAB tensor classes for fast algorithm prototyping , ACM Trans. Math. Software , 32 ( 2006 ), pp. 635 -- 653 , https://doi.org/10.1145/1186785.1186794. CrossrefISIGoogle Scholar

  • 3.  B. W. Bader, T. G. Kolda, J. Sun, D. M. Dunlavy, E. Acar, J. Mayo, E. C. Chi, and S. Hansen, MATLAB Tensor Toolbox Version 2.6, http://www.sandia.gov/ tgkolda/TensorToolbox/, 2015. Google Scholar

  • 4.  J. Ballani and  L. Grasedyck , Hierarchical tensor approximation of output quantities of parameter-dependent PDEs , SIAM/ASA J. Uncertain. Quantif. , 3 ( 2015 ), pp. 852 -- 872 , https://doi.org/10.1137/140960980. LinkISIGoogle Scholar

  • 5.  D. Barrera S. Crépey B. Diallo G. Fort E. Gobet and  U. Stazhynski , Stochastic approximation schemes for economic capital and risk margin computations, in CEMRACS 2017---Numerical Methods for Stochastic Models: Control, Uncertainty Quantification, Mean-Field, ESAIM Proc. Surveys. 65, EDP Sciences, Les Ulis , France , 2019 , pp. 182 -- 218 , https://doi.org/10.1051/proc/201965182. Google Scholar

  • 6.  C. Bayer M. Siebenmorgen and  R. Tempone , Smoothing the payoff for efficient computation of basket option prices , Quant. Finance , 18 ( 2018 ), pp. 491 -- 505 , https://doi.org/10.1080/14697688.2017.1308003. CrossrefISIGoogle Scholar

  • 7.  O. Burkovska K. Glau M. Mahlstedt and  B. Wohlmuth , Complexity reduction for calibration of American options , J. Comput. Finance , 23 ( 2019 ), pp. 25 -- 60 , https://doi.org/10.21314/JCF.2019.367. CrossrefISIGoogle Scholar

  • 8.  O. Burkovska B. Haasdonk J. Salomon and  B. Wohlmuth , Reduced basis methods for pricing options with the Black--Scholes and Heston models , SIAM J. Financial Math. , 6 ( 2015 ), pp. 685 -- 712 , https://doi.org/10.1137/140981216. LinkISIGoogle Scholar

  • 9.  L. Capriotti Y. Jiang and  A. Macrina , AAD and least-square Monte Carlo: Fast Bermudan-style options and XVA Greeks , Algorithmic Finance , 6 ( 2017 ), pp. 35 -- 49 , https://doi.org/10.3233/af-170201. CrossrefISIGoogle Scholar

  • 10.  R. Cont N. Lantos and  O. Pironneau , A reduced basis for option pricing , SIAM J. Financial Math. , 2 ( 2011 ), pp. 287 -- 316 , https://doi.org/10.1137/10079851X. LinkISIGoogle Scholar

  • 11.  W. Dahmen R. DeVore L. Grasedyck and  E. Süli , Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations , Found. Comput. Math. , 16 ( 2016 ), pp. 813 -- 874 , https://doi.org/10.1007/s10208-015-9265-9. CrossrefISIGoogle Scholar

  • 12.  M. A. H. Dempster, J. Kanniainen, J. Keane, and E. Vynckier, High-Performance Computing in Finance: Problems, Methods, and Solutions, 1st ed., Chapman & Hall/CRC, Boca Raton, FL, 2018. Google Scholar

  • 13.  D. J. Duffy, Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach, Wiley Finance Ser., John Wiley & Sons, Chichester, 2006, https://doi.org/10.1002/9781118673447. Google Scholar

  • 14.  M. Gaß K. Glau M. Mahlstedt and  M. Mair , Chebyshev interpolation for parametric option pricing , Finance Stoch. , 22 ( 2018 ), pp. 701 -- 731 , https://doi.org/10.1007/s00780-018-0361-y. CrossrefISIGoogle Scholar

  • 15.  M. B. Giles and  Multilevel Monte , Acta Numer. , 24 ( 2015 ), pp. 259 -- 328 , https://doi.org/10.1017/S096249291500001X. CrossrefISIGoogle Scholar

  • 16.  M. B. Giles and  Y. Xia , Multilevel Monte Carlo for exponential Lévy models , Finance Stoch. , 21 ( 2017 ), pp. 995 -- 1026 , https://doi.org/10.1007/s00780-017-0341-7. CrossrefISIGoogle Scholar

  • 17.  P. Glasserman, Monte Carlo Methods in Financial Engineering, Appl. Math. (N. Y.) 53, Springer-Verlag, New York, 2004. Google Scholar

  • 18.  L. Grasedyck D. Kressner and  C. Tobler , A literature survey of low-rank tensor approximation techniques , GAMM-Mitt. , 36 ( 2013 ), pp. 53 -- 78 , https://doi.org/10.1002/gamm.201310004. CrossrefGoogle Scholar

  • 19.  M. Griebel and  M. Holtz , Dimension-wise integration of high-dimensional functions with applications to finance , J. Complexity , 26 ( 2010 ), pp. 455 -- 489 , https://doi.org/10.1016/j.jco.2010.06.001. CrossrefISIGoogle Scholar

  • 20.  W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer Ser. Comput. Math. 42, Springer, Heidelberg, 2012, https://doi.org/10.1007/978-3-642-28027-6. Google Scholar

  • 21.  T. Haentjens and  K. J. Hout , ADI schemes for pricing American options under the Heston model , Appl. Math. Finance , 22 ( 2015 ), pp. 207 -- 237 , https://doi.org/10.1080/1350486X.2015.1009129. CrossrefGoogle Scholar

  • 22.  B. Hashemi and  L. N. Trefethen , Chebfun in three dimensions , SIAM J. Sci. Comput. , 39 ( 2017 ), pp. C341 -- C363 , https://doi.org/10.1137/16M1083803. LinkISIGoogle Scholar

  • 23.  J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs Math., Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-22470-1. Google Scholar

  • 24.  S. L. Heston , A closed-form solution for options with stochastic volatility with applications to bond and currency options , Rev. Financ. Stud. , 6 ( 1993 ), pp. 327 -- 343 . CrossrefISIGoogle Scholar

  • 25.  N. Hilber N. Reich C. Schwab and  C. Winter , Numerical methods for Lévy processes , Finance Stoch. , 13 ( 2009 ), pp. 471 -- 500 , https://doi.org/10.1007/s00780-009-0100-5. CrossrefISIGoogle Scholar

  • 26.  N. Hilber, O. Reichmann, C. Schwab, and C. Winter, Computational Methods for Quantitative Finance, Springer Finance, Springer, Heidelberg, 2013, https://doi.org/10.1007/978-3-642-35401-4. Google Scholar

  • 27.  M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance, Lect. Notes Comput. Sci. Eng. 77, Springer-Verlag, Berlin, 2011, https://doi.org/10.1007/978-3-642-16004-2. Google Scholar

  • 28.  K. Hout and  J. Toivanen , Application of operator splitting methods in finance, in Splitting Methods in Communication, Imaging, Science, and Engineering, Sci. Comput., Springer , Cham , 2016 , pp. 541 -- 575 . Google Scholar

  • 29.  B. N. Khoromskij, Tensor Numerical Methods in Scientific Computing, Radon Ser. Comput. Appl. Math. 19, De Gruyter, Berlin, 2018. Google Scholar

  • 30.  B. N. Khoromskij and  C. Schwab , Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs , SIAM J. Sci. Comput. , 33 ( 2011 ), pp. 364 -- 385 , https://doi.org/10.1137/100785715. LinkISIGoogle Scholar

  • 31.  T. G. Kolda and  B. W. Bader , Tensor decompositions and applications , SIAM Rev. , 51 ( 2009 ), pp. 455 -- 500 , https://doi.org/10.1137/07070111X. LinkISIGoogle Scholar

  • 32.  D. Kressner M. Steinlechner and  B. Vandereycken , Low-rank tensor completion by Riemannian optimization , BIT , 54 ( 2014 ), pp. 447 -- 468 , https://doi.org/10.1007/s10543-013-0455-z. CrossrefISIGoogle Scholar

  • 33.  D. Kressner M. Steinlechner and  B. Vandereycken , Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure , SIAM J. Sci. Comput. , 38 ( 2016 ), pp. A2018 -- A2044 , https://doi.org/10.1137/15M1032909. LinkISIGoogle Scholar

  • 34.  D. Kressner and  C. Tobler , Low-rank tensor Krylov subspace methods for parametrized linear systems , SIAM J. Matrix Anal. Appl. , 32 ( 2011 ), pp. 1288 -- 1316 , https://doi.org/10.1137/100799010. LinkISIGoogle Scholar

  • 35.  P. L'Ecuyer Carlo methods with applications in finance , Finance Stoch. , 13 ( 2009 ), pp. 307 -- 349 , https://doi.org/10.1007/s00780-009-0095-y. CrossrefISIGoogle Scholar

  • 36.  A.-M. Matache P.-A. Nitsche and  C. Schwab , Wavelet Galerkin pricing of American options on Lévy driven assets , Quant. Finance , 5 ( 2005 ), pp. 403 -- 424 , https://doi.org/10.1080/14697680500244478. CrossrefISIGoogle Scholar

  • 37.  A. Mayerhofer and  K. Urban , A reduced basis method for parabolic partial differential equations with parameter functions and application to option pricing , J. Comput. Finance , 20 ( 2017 ), pp. 71 -- 106 . ISIGoogle Scholar

  • 38.  R. Orús , A practical introduction to tensor networks: Matrix product states and projected entangled pair states , Ann. Physics , 349 ( 2014 ), pp. 117 -- 158 , https://doi.org/10.1016/j.aop.2014.06.013. CrossrefISIGoogle Scholar

  • 39.  I. V. Oseledets , SIAM J. Sci. Comput. , 33 ( 2011 ), pp. 2295 -- 2317 , https://doi.org/10.1137/090752286. LinkISIGoogle Scholar

  • 40.  A. T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006; to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering. Google Scholar

  • 41.  A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, Unitext 92, Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-15431-2. Google Scholar

  • 42.  C. Reisinger and  R. Wissmann , Numerical valuation of derivatives in high-dimensional settings via PDE expansions , J. Comput. Finance , 18 ( 2015 ), pp. 95 -- 127 . CrossrefISIGoogle Scholar

  • 43.  E. W. Sachs and  M. Schu , Reduced order models (POD) for calibration problems in finance, in Numerical Mathematics and Advanced Applications, Springer , Berlin , 2008 , pp. 735 -- 742 . Google Scholar

  • 44.  R. Schneider and  A. Uschmajew , Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , J. Complexity , 30 ( 2014 ), pp. 56 -- 71 , https://doi.org/10.1016/j.jco.2013.10.001. CrossrefISIGoogle Scholar

  • 45.  M. Steinlechner , Riemannian optimization for high-dimensional tensor completion , SIAM J. Sci. Comput. , 38 ( 2016 ), pp. S461 -- S484 , https://doi.org/10.1137/15M1010506. LinkISIGoogle Scholar

  • 46.  M. Steinlechner, Riemannian Optimization for Solving High-Dimensional Problems with Low-Rank Tensor Structure, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2016. Google Scholar

  • 47.  A. Uschmajew and B. Vandereycken, Greedy rank updates combined with Riemannian descent methods for low-rank optimization, in Proceedings of the 2015 IEEE International Conference on Sampling Theory and Applications (SampTA), 2015, pp. 420--424, https://doi.org/10.1109/SAMPTA.2015.7148925. Google Scholar