Consider a particle whose position evolves along the edges of a network. One definition for the displacement of a particle is the length of the shortest path on the network between the current and initial positions of the particle. Such a definition fails to incorporate information of the actual path the particle traversed. In this work we consider another definition for the displacement of a particle on networked topologies. Using this definition, which we term the winding distance, we demonstrate that for Brownian particles, confinement to a network can induce a transition in the mean squared displacement from diffusive to ballistic behavior, $\langle x^2(t) \rangle \propto t^2$ for long times. A multiple scales approach is used to derive a macroscopic evolution equation for the displacement of a particle and uncover a topological condition for whether this transition in the mean squared displacement will occur. Furthermore, for networks satisfying this topological condition, we identify a prediction of the timescale upon which the displacement transitions to long-time behavior. Finally, we extend the investigation of displacement on networks to a class of anomalously diffusive transport processes, where we find that the mean squared displacement at long times is affected by both network topology and the character of the transport process.

  • 1.  A. Aman and  T. Piotrowski , Cell migration during morphogenesis , Dev. Biol. , 341 ( 2010 ), pp. 20 -- 33 . CrossrefGoogle Scholar

  • 2.  M. A. Welte , Bidirectional transport along microtubules , Curr. Biol. , 14 ( 2004 ), R525 . CrossrefISIGoogle Scholar

  • 3.  M. J. Kim H. W. Coo J. Kim H. Kim and  B. J. Sung , Translational and rotational diffusion of a single nanorod in unentangled polymer melts , Phys. Rev. E , 92 ( 2015 ), 042601 . CrossrefGoogle Scholar

  • 4.  R. Junevicius and  M. Bogdevicius , Mathematical modelling of network traffic flow , Transport , 24 ( 2009 ), pp. 333 -- 338 . CrossrefGoogle Scholar

  • 5.  G. Asaithambi V. Kanagaraj K. K. Srinivasan and  R. Sivanandan , Study of traffic flow characteristics using different vehicle-following models under mixed traffic conditions , Transp. Lett. , 10 ( 2018 ), pp. 92 -- 103 . CrossrefGoogle Scholar

  • 6.  R. L. Hughes , A continuum theory for the flow of pedestrians , Transport. Res. B-Meth. , 36 ( 2002 ), pp. 507 -- 535 . CrossrefISIGoogle Scholar

  • 7.  S. Redner , A Guide to First-Passage Processes , 1 st ed., Cambridge University Press , New York , 2001 . Google Scholar

  • 8.  O. Bénichou P. Illien G. Oshanin A. Sarracino and  R. Voituriez , Diffusion and subdiffusion of interacting particles on comblike structures , Phys. Rev. Lett. , 115 ( 2015 ), 220601 . CrossrefGoogle Scholar

  • 9.  R. Burioni D. Cassi G. Giusiano and  S. Regina , Anomalous diffusion and Hall effect on comb lattices , Phys. Rev. E , 67 ( 2003 ), 016116 . CrossrefGoogle Scholar

  • 10.  P. Illien and  O. Bénichou , Propagators of random walks on comb lattices of arbitrary dimension , J. Phys. A. , 49 ( 2016 ), 265001 . CrossrefGoogle Scholar

  • 11.  E. Agliari D. Cassi L. Cattivelli and  F. Sartori , Two-particle problem in comblike structures , Phys. Rev. E , 93 ( 2016 ), 052111 . CrossrefGoogle Scholar

  • 12.  A. Bhattacharya , Random walk for interacting particles on a Sierpínski gasket , Phys. Rev. E , 49 ( 1994 ), 4946 . CrossrefGoogle Scholar

  • 13.  R. A. Guyer , A random walker on a fractually stuctured object , Phys. Rev. A , 29 ( 1984 ), 2751 . CrossrefGoogle Scholar

  • 14.  C. Schulzky A. Franz and  K. H. Hoffmann , Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets , SIGSAM Bull. , 34 ( 2000 ), pp. 1 -- 8 . CrossrefGoogle Scholar

  • 15.  R. Dasgupta T. K. Ballabh and  S. Tarafdar , Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: A new algorithm for infinite fractal lattices , J. Phys. A , 32 ( 1999 ), pp. 6503 -- 6516 . CrossrefGoogle Scholar

  • 16.  J. J. Kozak , Random walks on the Menger sponge , Chem. Phys. Lett. , 275 ( 1997 ), pp. 199 -- 202 . CrossrefGoogle Scholar

  • 17.  Z.-G. Huang X.-J. Xu Z.-X. Wu Y.-H. Wang and  Walks . Phys . J. B , 51 ( 2006 ), pp. 549 -- 553 . Google Scholar

  • 18.  Y. Gefen B. B. Mandelbrot and  A. Aharony , Critical phenomena on fractal lattices , Phys. Rev. Lett. , 45 ( 1980 ), pp. 855 -- 858 . CrossrefGoogle Scholar

  • 19.  R. Haber J. Prehl K. H. Hoffmann and  H. Herrmann , Random walks of orientated particles on fractals , J. Phys. A , 47 ( 2014 ), 155001 . CrossrefGoogle Scholar

  • 20.  L. K. Gallos , Random walk and trapping processes on scale-free networks , Phys. Rev. E , 70 ( 2004 ), 046116 . CrossrefGoogle Scholar

  • 21.  J. Rudnick . Hu, The winding angle distribution of an ordinary random walk , J. Phys. A , 20 ( 1987 ), pp. 4421 -- 4438 . CrossrefGoogle Scholar

  • 22.  D. R. Nelson , Vortex entanglement in high TC superconductors , Phys. Rev. Lett. , 60 ( 1988 ), pp. 1973 -- 1976 . CrossrefGoogle Scholar

  • 23.  F. Spitzer , Some theorems concerning 2-dimensional Brownian motion , Trans. Amer. Math. Soc. , 87 ( 1958 ), pp. 187 -- 197 . Google Scholar

  • 24.  A. Comtet J. Desbois and  S. Ouvry , Winding of planar Brownian curves , J. Phys. A , 23 ( 1990 ), pp. 3563 -- 3572 . CrossrefGoogle Scholar

  • 25.  A. Kundu A. Comtet and  S. N. Majumdar , Winding statistics of a Brownian particle on a ring , J. Phys. A , 47 ( 2014 ), 385001 . CrossrefGoogle Scholar

  • 26.  S. J. Chapman and  A. Shabala , Effective transport properties of lattices , SIAM J. Appl. Math. , 77 ( 2017 ), pp. 1631 -- 1652 , https://doi.org/10.1137/16M1092039. LinkISIGoogle Scholar

  • 27.  M. Barlow J. Pitman and  M. Yor , On Walsh's Brownian motions , in Séminaire de Probabilités XXIII , Lecture Notes in Math. 1372 , Springer , Berlin , 1989 , pp. 275 -- 293 . Google Scholar

  • 28.  P. L. Krapivsky S. Redner and  E. Ban-Naim , A Kinetic View of Statistical Physics , 1 st ed., Cambridge University Press , Cambridge, UK , 2010 . Google Scholar

  • 29.  C. Monthus and  C. Texier , Random walk on the Bethe lattice and hyperbolic Brownian motion , J. Phys. A , 29 ( 1996 ), pp. 2399 -- 2409 . CrossrefGoogle Scholar

  • 30.  R. Metzler and  J. Klafter , The random walk's guide to anomalous diffusion: A fractional dynamics approach , Phys. Rep. , 339 ( 2000 ), pp. 1 -- 77 . CrossrefISIGoogle Scholar

  • 31.  R. Hilfer and  L. Anton , Fractional master equations and fractal time random walks , Phys. Rev. E , 51 ( 1995 ), R848 . CrossrefISIGoogle Scholar

  • 32.  R. Metzler and  J. Klafter , Boundary value problems for fractional diffusion equations , Phys. A , 278 ( 2000 ), pp. 107 -- 125 . CrossrefISIGoogle Scholar

  • 33.  S. Ganguly L. S. Williams I. M. Palacios and  R. E. Goldstein , Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture , Proc. Natl. Acad. Sci. USA , 109 ( 2012 ), pp. 15109 -- 15114 . CrossrefISIGoogle Scholar

  • 34.  R. Nieuwburg D. Nashchekin M. Jakobs A. P. Carter P. K. Trong R. E. Goldstein and  D. St Johnston , Localised dynactin protects growing microtubules to deliver oskar mRNA to the posterior cortex of the Drosophila oocyte, eLife, 6 ( 2017 ), e27237. Google Scholar

  • 35.  P. A. Vasquez Y. Jin E. Palmer D. Hill and  M. G. Forest , Modeling and simulation of mucus flow in human bronchial epithelial cell cultures -- Part I: Idealized axisymmetric swirling flow , PLOS Comput. Biol. , 12 ( 2016 ), e1004872 . CrossrefGoogle Scholar

  • 36.  M. A. M. Franker and  C. C. Hoogenraad , Microtubule-based transport---basic mechanisms, traffic rules and role in neurological pathogenesis , J. Cell Sci. , 126 ( 2013 ), pp. 2319 -- 2329 . CrossrefGoogle Scholar

  • 37.  M. A. Welte , Bidirectional transport along microtubules , Curr. Biol. , 14 ( 2004 ), R525 . CrossrefISIGoogle Scholar

  • 38.  A. Kahana G. Kenan M. Feingold M. Elbaum and  R. Granek , Active transport on disordered microtubule networks: The generalized random velocity model , Phys. Rev. E , 78 ( 2008 ), 051912 . CrossrefGoogle Scholar

  • 39.  P. C. Bressloff and  J. M. Newby , Stochastic models of intracellular transport , Rev. Mod. Phys. , 85 ( 2013 ), pp. 135 -- 196 . CrossrefISIGoogle Scholar