Displacement of Transport Processes on Networked Topologies
Abstract
Consider a particle whose position evolves along the edges of a network. One definition for the displacement of a particle is the length of the shortest path on the network between the current and initial positions of the particle. Such a definition fails to incorporate information of the actual path the particle traversed. In this work we consider another definition for the displacement of a particle on networked topologies. Using this definition, which we term the winding distance, we demonstrate that for Brownian particles, confinement to a network can induce a transition in the mean squared displacement from diffusive to ballistic behavior, $\langle x^2(t) \rangle \propto t^2$ for long times. A multiple scales approach is used to derive a macroscopic evolution equation for the displacement of a particle and uncover a topological condition for whether this transition in the mean squared displacement will occur. Furthermore, for networks satisfying this topological condition, we identify a prediction of the timescale upon which the displacement transitions to long-time behavior. Finally, we extend the investigation of displacement on networks to a class of anomalously diffusive transport processes, where we find that the mean squared displacement at long times is affected by both network topology and the character of the transport process.
1. , Cell migration during morphogenesis , Dev. Biol. , 341 ( 2010 ), pp. 20 -- 33 .
2. , Bidirectional transport along microtubules , Curr. Biol. , 14 ( 2004 ), R525 .
3. , Translational and rotational diffusion of a single nanorod in unentangled polymer melts , Phys. Rev. E , 92 ( 2015 ), 042601 .
4. , Mathematical modelling of network traffic flow , Transport , 24 ( 2009 ), pp. 333 -- 338 .
5. , Study of traffic flow characteristics using different vehicle-following models under mixed traffic conditions , Transp. Lett. , 10 ( 2018 ), pp. 92 -- 103 .
6. , A continuum theory for the flow of pedestrians , Transport. Res. B-Meth. , 36 ( 2002 ), pp. 507 -- 535 .
7. , A Guide to First-Passage Processes , 1 st ed., Cambridge University Press , New York , 2001 .
8. , Diffusion and subdiffusion of interacting particles on comblike structures , Phys. Rev. Lett. , 115 ( 2015 ), 220601 .
9. , Anomalous diffusion and Hall effect on comb lattices , Phys. Rev. E , 67 ( 2003 ), 016116 .
10. , Propagators of random walks on comb lattices of arbitrary dimension , J. Phys. A. , 49 ( 2016 ), 265001 .
11. , Two-particle problem in comblike structures , Phys. Rev. E , 93 ( 2016 ), 052111 .
12. , Random walk for interacting particles on a Sierpínski gasket , Phys. Rev. E , 49 ( 1994 ), 4946 .
13. , A random walker on a fractually stuctured object , Phys. Rev. A , 29 ( 1984 ), 2751 .
14. , Resistance scaling and random walk dimensions for finitely ramified Sierpinski carpets , SIGSAM Bull. , 34 ( 2000 ), pp. 1 -- 8 .
15. , Scaling exponents for random walks on Sierpinski carpets and number of distinct sites visited: A new algorithm for infinite fractal lattices , J. Phys. A , 32 ( 1999 ), pp. 6503 -- 6516 .
16. , Random walks on the Menger sponge , Chem. Phys. Lett. , 275 ( 1997 ), pp. 199 -- 202 .
17. . Phys . J. B , 51 ( 2006 ), pp. 549 -- 553 .
18. , Critical phenomena on fractal lattices , Phys. Rev. Lett. , 45 ( 1980 ), pp. 855 -- 858 .
19. , Random walks of orientated particles on fractals , J. Phys. A , 47 ( 2014 ), 155001 .
20. , Random walk and trapping processes on scale-free networks , Phys. Rev. E , 70 ( 2004 ), 046116 .
21. . Hu, The winding angle distribution of an ordinary random walk , J. Phys. A , 20 ( 1987 ), pp. 4421 -- 4438 .
22. , Vortex entanglement in high TC superconductors , Phys. Rev. Lett. , 60 ( 1988 ), pp. 1973 -- 1976 .
23. , Some theorems concerning 2-dimensional Brownian motion , Trans. Amer. Math. Soc. , 87 ( 1958 ), pp. 187 -- 197 .
24. , Winding of planar Brownian curves , J. Phys. A , 23 ( 1990 ), pp. 3563 -- 3572 .
25. , Winding statistics of a Brownian particle on a ring , J. Phys. A , 47 ( 2014 ), 385001 .
26. , Effective transport properties of lattices , SIAM J. Appl. Math. , 77 ( 2017 ), pp. 1631 -- 1652 , https://doi.org/10.1137/16M1092039.
27. , On Walsh's Brownian motions , in Séminaire de Probabilités XXIII ,
Lecture Notes in Math. 1372 , Springer , Berlin , 1989 , pp. 275 -- 293 .28. , A Kinetic View of Statistical Physics , 1 st ed., Cambridge University Press , Cambridge, UK , 2010 .
29. , Random walk on the Bethe lattice and hyperbolic Brownian motion , J. Phys. A , 29 ( 1996 ), pp. 2399 -- 2409 .
30. , The random walk's guide to anomalous diffusion: A fractional dynamics approach , Phys. Rep. , 339 ( 2000 ), pp. 1 -- 77 .
31. , Fractional master equations and fractal time random walks , Phys. Rev. E , 51 ( 1995 ), R848 .
32. , Boundary value problems for fractional diffusion equations , Phys. A , 278 ( 2000 ), pp. 107 -- 125 .
33. , Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture , Proc. Natl. Acad. Sci. USA , 109 ( 2012 ), pp. 15109 -- 15114 .
34. , Localised dynactin protects growing microtubules to deliver oskar mRNA to the posterior cortex of the Drosophila oocyte, eLife, 6 ( 2017 ), e27237.
35. , Modeling and simulation of mucus flow in human bronchial epithelial cell cultures -- Part I: Idealized axisymmetric swirling flow , PLOS Comput. Biol. , 12 ( 2016 ), e1004872 .
36. , Microtubule-based transport---basic mechanisms, traffic rules and role in neurological pathogenesis , J. Cell Sci. , 126 ( 2013 ), pp. 2319 -- 2329 .
37. , Bidirectional transport along microtubules , Curr. Biol. , 14 ( 2004 ), R525 .
38. , Active transport on disordered microtubule networks: The generalized random velocity model , Phys. Rev. E , 78 ( 2008 ), 051912 .
39. , Stochastic models of intracellular transport , Rev. Mod. Phys. , 85 ( 2013 ), pp. 135 -- 196 .