Abstract

In many applications throughout science and engineering, model reduction plays an important role replacing expensive large-scale linear dynamical systems by inexpensive reduced order models that capture key features of the original, full order model. One approach to model reduction finds reduced order models that are locally optimal approximations in the $\mathcal{H}_2$-norm, an approach taken by the iterative rational Krylov algorithm (IRKA), among others. Here we introduce a new approach for $\mathcal{H}_2$-optimal model reduction using the projected nonlinear least squares framework previously introduced in [J. M. Hokanson, SIAM J. Sci. Comput., 39 (2017), pp. A3107--A3128]. At each iteration, we project the $\mathcal{H}_2$ optimization problem onto a finite-dimensional subspace yielding a weighted least squares rational approximation problem. Subsequent iterations append this subspace such that the least squares rational approximant asymptotically satisfies the first order necessary conditions of the original, $\mathcal{H}_2$ optimization problem. This enables us to build reduced order models with similar error in the $\mathcal{H}_2$-norm but using far fewer evaluations of the expensive, full order model compared to competing methods. Moreover, our new algorithm only requires access to the transfer function of the full order model, unlike IRKA, which requires a state-space representation, or TF-IRKA, which requires both the transfer function and its derivative. Applying the projected nonlinear least squares framework to the $\mathcal{H}_2$-optimal model reduction problem opens new avenues for related model reduction problems.

Keywords

  1. model reduction
  2. $\mathcal{H}_2$ approximation
  3. projected nonlinear least squares
  4. rational approximation
  5. transfer function

MSC codes

  1. 41A20
  2. 46E22
  3. 90C53
  4. 93A15
  5. 93C05
  6. 93C15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang, Recycling BiCG with an application to model reduction, SIAM J. Sci. Comput., 34 (2012), pp. A1925--A1949, https://doi.org/10.1137/100801500.
2.
B. D. O. Anderson and A. C. Antoulas, Rational interpolation and state-variable realizations, Linear Algebra Appl., 138 (1990), pp. 479--509, https://doi.org/10.1016/0024-3795(90)90140-8.
3.
A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713.
4.
N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337--404, https://doi.org/10.1090/S0002-9947-1950-0051437-7.
5.
C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Systems Control Lett., 58 (2009), pp. 225--232, https://doi.org/10.1016/j.sysconle.2008.10.016.
6.
C. Beattie and S. Gugercin, Realization-independent $\mathcal{H}_2$-approximation, in Proceedings of the 51st Annual Conference on Decision and Control, IEEE, 2012, pp. 4953--4958, https://doi.org/10.1109/CDC.2012.6426344.
7.
C. Beattie and S. Gugercin, Model reduction by rational interpolation, in Model Reduction and Approximation, P. Benner, A. Cohen, M. Ohlberger, and K. Wilcox, eds., Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017, pp. 297--334, https://doi.org/10.1137/1.9781611974829.ch7.
8.
C. Beattie, S. Gugercin, and S. Wyatt, Inexact solves in interpolatory model reduction, Linear Algebra Appl., 436 (2012), pp. 2916--2943, https://doi.org/10.1016/j.laa.2011.07.015.
9.
C. A. Beattie and S. Gugercin, Inexact solves in Krylov-based model reduction, in Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, 2006, pp. 3405--3411, https://doi.org/10.1109/CDC.2006.376798.
10.
C. A. Beattie and S. Gugercin, A trust region method for optimal $\mathcal{H}_2$ model reduction, in Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, 2009, pp. 5370--5375, https://doi.org/10.1109/CDC.2009.5400605.
11.
P. Benner, A. Cohen, M. Ohlberger, and K. Wilcox, eds., Model Reduction and Approximation: Theory and Algorithms, Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017, https://doi.org/10.1137/1.9781611974829.
12.
\AA. Björck and G. H. Golub, Numerical methods for computing angles between linear subspaces, Math. Comp., 27 (1973), pp. 579--594, mailto:https://doi.org/10.1090/S0025-5718-1973-0348991-3.
13.
T. Boros, T. Kailath, and V. Olshevsky, Pivoting and backwards stability of fast algorithms for solving Cauchy linear equations, Linear Algebra Appl., 343-344 (2002), pp. 63--99, https://doi.org/10.1016/S0024-3795(01)00519-5.
14.
J. P. Boyd, Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals, J. Sci. Comput., 2 (1987), pp. 99--109, https://doi.org/10.1007/BF01061480.
15.
M. A. Branch, T. F. Coleman, and Y. Li, A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM J. Sci. Comput., 21 (1999), pp. 1--23, https://doi.org/10.1137/S1064827595289108.
16.
T. Bui-Thanh, K. Willcox, and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput., 30 (2008), pp. 3270--3288, https://doi.org/10.1137/070694855.
17.
A. Castagnotto, H. K. Panzer, and B. Lohmann, Fast H2-optimal model order reduction exploiting the local nature of Krylov-subspace methods, in Proceedings of the European Control Conference, IEEE, 2016, pp. 1958--1969, https://doi.org/10.1109/ECC.2016.7810578.
18.
Y. Chahlaoui and P. V. Dooren, A Collection of Benchmark Examples for Model Reduction of Linear Time Invarant Dynamical Systems, Tech. report, SLICOT, 2002, http://slicot.org/objects/software/reports/SLWN2002-2.ps.gz.
19.
E. De Sturler, S. Gugercin, M. E. Kilmer, S. Chaturantabut, C. Beattie, and M. O'Connell, Nonlinear parametric inversion using interpolatory model reduction, SIAM J. Sci. Comput., 37 (2015), pp. B495--B517, https://doi.org/10.1137/130946320.
20.
J. Demmel, Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 562--580, https://doi.org/10.1137/S0895479897328716.
21.
P. V. Dooren, K. A. Gallivan, and P.-A. Absil, $\mathcal{H}_2$-optimal model reduction of MIMO systems, Appl. Math. Lett., 21 (2008), pp. 1267--1273, https://doi.org/10.1016/j.aml.2007.09.015.
22.
P. V. Dooren, K. A. Gallivan, and P.-A. Absil, $\mathcal{H}_2$-optimal model reduction with higher-order poles, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2738--2753, https://doi.org/10.1137/080731591.
23.
Z. Drmač, S. Gugercin, and C. Beattie, Quadrature-based vector fitting for discretized $\mathcal{H}_2$ approximation, SIAM J. Sci. Comput., 37 (2015), pp. A625--A652, https://doi.org/10.1137/140961511.
24.
G. Flagg, C. Beattie, and S. Gugercin, Convergence of the iterative rational Krylov algorithm, Systems Control Lett., 61 (2012), pp. 688--691.
25.
W. Gawronski, Advanced Structural Dynamics and Active Control of Structures, Springer, New York, 2004.
26.
G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413--432, https://doi.org/10.1137/0710036.
27.
E. J. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1997.
28.
S. Gugercin, A. C. Antoulas, and C. Beattie, $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609--638, https://doi.org/10.1137/060666123.
29.
B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Delivery, 14 (1999), pp. 1052--1061, https://doi.org/10.1109/61.772353.
30.
N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 2002.
31.
J. M. Hokanson, Projected nonlinear least squares for exponential fitting, SIAM J. Sci. Comput., 39 (2017), pp. A3107--A3128, https://doi.org/10.1137/16M1084067.
32.
J. M. Hokanson and C. C. Magruder, Least Squares Rational Approximation, https://arxiv.org/abs/1811.12590, 2018.
33.
E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python, http://www.scipy.org/.
34.
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.
35.
R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User's Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools 6, SIAM, Philadelphia, 1998, https://doi.org/10.1137/1.9780898719628.
36.
L. Meier and D. Luenberger, Approximation of linear constant systems, IEEE Trans. Automat. Control, 12 (1967), pp. 585--588, https://doi.org/10.1109/TAC.1967.1098680.
37.
L. Meier, III, Approximation of Linear Constant Systems by Linear Constant Systems of Lower Order, Ph.D. thesis, Stanford University, 1965.
38.
Y. Nakatsukasa, O. Sète, and L. N. Trefethen, The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018), pp. A1494--A1522, https://doi.org/10.1137/16M1106122.
39.
M. O'Connell, M. E. Kilmer, E. de Sturler, and S. Gugercin, Computing reduced order models via inner-outer Krylov recycling in diffuse optical tomography, SIAM J. Sci. Comput., 39 (2017), pp. B272--B297, https://doi.org/10.1137/16M1062880.
40.
C. K. Sanathanan and J. Koerner, Transfer function synthesis as a ratio of two complex polynomials, IEEE Trans. Automat. Control, 8 (1963), pp. 56--58, https://doi.org/10.1109/TAC.1963.1105517.
41.
P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data: Theory of Improper and Noncircular Signals, Cambridge University Press, Cambridge, UK, 2010.
42.
G. Shi, On the nonconvergence of the vector fitting algorithm, IEEE Trans. Circuits Syst. II, 63 (2016), pp. 718--722.
43.
T. Stykel and A. Vasilyev, A two-step model reduction approach for mechanical systems with moving loads, J. Comput. Appl. Math., 297 (2016), pp. 85--97, https://doi.org/10.1016/j.cam.2015.11.014.
44.
T. Wolf, H. K. F. Panzer, and B. Lohmann, $\mathcal{H}_2$ pseudo-optimality in model order reduction by Krylov subspace methods, in Proceedings of the European Control Conference, 2013, pp. 3427--3432, https://doi.org/10.23919/ECC.2013.6669585.
45.
A. Yousuff, D. A. Wagie, and R. E. Skelton, Linear system approximation via covariance equivalent realizations, J. Math. Anal. Appl., 106 (1985), pp. 91--115, https://doi.org/10.1016/0022-247X(85)90133-7.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A4017 - A4045
ISSN (online): 1095-7197

History

Submitted: 4 March 2019
Accepted: 21 August 2020
Published online: 17 December 2020

Keywords

  1. model reduction
  2. $\mathcal{H}_2$ approximation
  3. projected nonlinear least squares
  4. rational approximation
  5. transfer function

MSC codes

  1. 41A20
  2. 46E22
  3. 90C53
  4. 93A15
  5. 93C05
  6. 93C15

Authors

Affiliations

Funding Information

Defense Advanced Research Projects Agency https://doi.org/10.13039/100000185

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.