Shape-Driven Interpolation With Discontinuous Kernels: Error Analysis, Edge Extraction, and Applications in Magnetic Particle Imaging
Abstract
Accurate interpolation and approximation techniques for functions with discontinuities are key tools in many applications, such as medical imaging. In this paper, we study a radial basis function type of method for scattered data interpolation that incorporates discontinuities via a variable scaling function. For the construction of the discontinuous basis of kernel functions, information on the edges of the interpolated function is necessary. We characterize the native space spanned by these kernel functions and study error bounds in terms of the fill distance of the node set. To extract the location of the discontinuities, we use a segmentation method based on a classification algorithm from machine learning. The results of the conducted numerical experiments are in line with the theoretically derived convergence rates in case that the discontinuities are a priori known. Further, an application to interpolation in magnetic particle imaging shows that the presented method is very promising in order to obtain edge-preserving image reconstructions in which ringing artifacts are reduced.
1. R.A. Adams and J. Fournier, Sobolev Spaces, Academic Press, London, 2003.
2. , Bivariate Lagrange interpolation at the Padua points: The generating curve approach , J. Approx. Theory , 143 ( 2006 ), pp. 15 -- 25 .
3. , Polynomial approximation on Lissajous curves in the $d$-cube . Appl. Numer. Math. , 116 ( 2017 ), pp. 47 -- 56 .
4. , Interpolation with variably scaled kernels , IMA J. Numer. Anal. , 35 ( 2015 ), pp. 199 -- 219 .
5. , A new class of radial basis functions with compact support , Math. Comp. , 70 , 233 ( 2000 ), pp. 307--318.
6. M. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2003.
7. J.T. Bushberg, J.A. Seibert, E.M. Leidholdt, and J.M. Boone, The Essential Physics of Medical Imaging, 2nd ed., Lippincott Williams & Wilkins, Philadelphia, 2001.
8. , A computational approach to edge detection , IEEE TPAMI , 8 ( 1986 ), pp. 34 -- 43 .
9. , Characteristic features of MR truncation artifacts , Am. J. Roentgenol. , 151 ( 1988 ), pp. 1219 -- 1228 .
10. , Spectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI , Dolomites Res. Notes Approx. , 10 ( 2017 ), pp. 128 -- 137 .
11. S. De Marchi, F. Marchetti, and E. Perracchione, Jumping with variably scaled discontinuous kernels (VSDKs), BIT, 2019, https://doi.org/10.1007/s10543-019-00786-z.
12. , Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous nodes , Numer. Math. , 133 , 1 ( 2016 ), pp. 685--705.
13. Lagrange interpolation at the node points of Lissajous curves---The degenerate case , Appl. Math. Comput. , 289 ( 2016 ), pp. 409 -- 425 .
14. W. Erb, C. Kaethner, P. Dencker, and M. Ahlborg, A survey on bivariate Lagrange interpolation on Lissajous nodes, Dolomites Res. Notes Approx., 8 (special issue) (2015), pp. 23--36.
15. , Scattered data interpolation on embedded submanifolds with restricted positive definite Kernels: Sobolev error estimates , SIAM J. Numer. Anal. , 50 , 3 ( 2012 ), pp. 1753--1776.
16. G.E. Fasshauer and M.J. McCourt, Kernel-Based Approximation Methods Using MATLAB, World Scientific, Singapore, 2015.
17. , The Gibbs phenomenon for radial basis functions, in The Gibbs Phenomenon in Various Representations and Applications, A. Jerri, ed., Sampling Publishing, Potsdam , NY , 2011 , pp. 201 -- 224 .
18. , Tomographic imaging using the nonlinear response of magnetic particles , Nature , 435 ( 2005 ), pp. 1214 -- 1217 .
19. , On the Gibbs phenomenon and its resolution , SIAM Rev. , 39 ( 1997 ), pp. 644 -- 668 .
20. A. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations, Kluwer Academic Publishers, Dordrecht, 1998.
21. , A note on the Gibbs phenomenon with multiquadric radial basis functions , Appl. Numer. Math. , 57 ( 2007 ), pp. 213 -- 219 .
22. , Iterative adaptive RBF methods for detection of edges in two-dimensional functions , Appl. Numer. Math. , 61 ( 2011 ), pp. 77 -- 91 .
23. , Non-equispaced system matrix acquisition for magnetic particle imaging based on Lissajous node points , IEEE Trans. Med. Imaging , 35 ( 2016 ), pp. 2476 -- 2485 .
24. T. Knopp and T.M. Buzug, Magnetic Particle Imaging, Springer-Verlag, Berlin, 2012.
25. , Trajectory analysis for magnetic particle imaging , Phys. Med. Biol. , 54 ( 2009 ), pp. 385 -- 397 .
26. , Survey: Interpolation methods in medical image processing , IEEE Trans. Med. Imaging , 18 ( 1999 ), pp. 1049 -- 1075 .
27. , Functions of positive and negative type and their connection with the theory of integral equations , Philos. Trans. Roy. Soc. , 209 ( 1909 ), pp. 415 -- 446 .
28. , Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , Math. Comp. , 74 ( 2005 ), pp. 743 -- 763 .
29. C. Rieger, Sampling Inequalities and Applications, Dissertation, University of Göttingen, 2008.
30. , Edge detection methods based on RBF interpolation , J. Comput. Appl. Math. , 349 ( 2019 ), pp. 532 -- 547 .
31. , Interpolating functions with gradient discontinuities via variably scaled kernels , Dolomites Res. Notes Approx. , 11 ( 2018 ), pp. 3 -- 14 .
32. , On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains , J. Lond. Math. Soc. , 60 ( 1999 ), pp. 237 -- 257 .
33. , Digital total variation filtering as postprocessing for radial basis function approximation methods , Comput. Math. Appl. , 52 ( 2006 ), pp. 1119 -- 1130 .
34. Hilbert spaces for radial basis functions. I., in New Developments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math. 132, Birkhäuser , Basel , 1999 , pp. 255 -- 282 .
35. , Approximation by positive definite kernels, in Advanced Problems in Constructive Approximation, Birkhäuser , Basel , 2003 , pp. 203 -- 222 .
36. B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.
37. , A classified and comparative study of edge detection algorithms, in Proc. Int. Conf. on Inform. Technology: Coding and Computing, Las Vegas , NV , 2002 , pp. 117 -- 120 .
38. , The Fourier reconstruction of a head section , IEEE Trans. Nucl. Sci. , NS-21 ( 1974 ), pp. 21 -- 43 .
39. , A tutorial on support vector regression , Stat. Comput. , 14 ( 2004 ), pp. 199 -- 222 .
40. C.J. Solomon and T.P. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, Wiley-Blackwell, Hoboken, NJ, 2010.
41. , Improvement of image quality using interpolated projection data estimation method in SPECT , Ann. Nucl. Med. , 23 ( 2009 ), pp. 617 -- 626 .
42. , Interpolation revisited , IEEE Trans. Med. Imaging , 19 ( 2000 ), pp. 739 -- 758 .
43. H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983.
44. H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2005.
45. A. Zygmund, Trigonometric Series, 3rd ed., Vols. I and II combined, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.