Computational Methods in Science and Engineering

Shape-Driven Interpolation With Discontinuous Kernels: Error Analysis, Edge Extraction, and Applications in Magnetic Particle Imaging

Accurate interpolation and approximation techniques for functions with discontinuities are key tools in many applications, such as medical imaging. In this paper, we study a radial basis function type of method for scattered data interpolation that incorporates discontinuities via a variable scaling function. For the construction of the discontinuous basis of kernel functions, information on the edges of the interpolated function is necessary. We characterize the native space spanned by these kernel functions and study error bounds in terms of the fill distance of the node set. To extract the location of the discontinuities, we use a segmentation method based on a classification algorithm from machine learning. The results of the conducted numerical experiments are in line with the theoretically derived convergence rates in case that the discontinuities are a priori known. Further, an application to interpolation in magnetic particle imaging shows that the presented method is very promising in order to obtain edge-preserving image reconstructions in which ringing artifacts are reduced.

  • 1.  R.A. Adams and J. Fournier, Sobolev Spaces, Academic Press, London, 2003.Google Scholar

  • 2.  L. Bos M. Caliari S. De Marchi M. Vianello and  Y. Xu , Bivariate Lagrange interpolation at the Padua points: The generating curve approach , J. Approx. Theory , 143 ( 2006 ), pp. 15 -- 25 . CrossrefISIGoogle Scholar

  • 3.  L. Bos S. De Marchi and  M. Vianello , Polynomial approximation on Lissajous curves in the $d$-cube . Appl. Numer. Math. , 116 ( 2017 ), pp. 47 -- 56 . CrossrefISIGoogle Scholar

  • 4.  M. Bozzini L. Lenarduzzi M. Rossini and  R. Schaback , Interpolation with variably scaled kernels , IMA J. Numer. Anal. , 35 ( 2015 ), pp. 199 -- 219 . CrossrefISIGoogle Scholar

  • 5.  M. Buhmann , A new class of radial basis functions with compact support , Math. Comp. , 70 , 233 ( 2000 ), pp. 307--318. CrossrefISIGoogle Scholar

  • 6.  M. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2003.Google Scholar

  • 7.  J.T. Bushberg, J.A. Seibert, E.M. Leidholdt, and J.M. Boone, The Essential Physics of Medical Imaging, 2nd ed., Lippincott Williams & Wilkins, Philadelphia, 2001.Google Scholar

  • 8.  J.F. Canny , A computational approach to edge detection , IEEE TPAMI , 8 ( 1986 ), pp. 34 -- 43 . ISIGoogle Scholar

  • 9.  L.F. Czervionke J.M. Czervionke D.L. Daniels and  V.M. Haughton , Characteristic features of MR truncation artifacts , Am. J. Roentgenol. , 151 ( 1988 ), pp. 1219 -- 1228 . CrossrefISIGoogle Scholar

  • 10.  S. De Marchi W. Erb and  F. Marchetti , Spectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI , Dolomites Res. Notes Approx. , 10 ( 2017 ), pp. 128 -- 137 . ISIGoogle Scholar

  • 11.  S. De Marchi, F. Marchetti, and E. Perracchione, Jumping with variably scaled discontinuous kernels (VSDKs), BIT, 2019, https://doi.org/10.1007/s10543-019-00786-z.Google Scholar

  • 12.  W. Erb C. Kaethner M. Ahlborg and  T.M. Buzug , Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous nodes , Numer. Math. , 133 , 1 ( 2016 ), pp. 685--705. CrossrefISIGoogle Scholar

  • 13.  W. Erb Lagrange interpolation at the node points of Lissajous curves---The degenerate case , Appl. Math. Comput. , 289 ( 2016 ), pp. 409 -- 425 . CrossrefISIGoogle Scholar

  • 14.  W. Erb, C. Kaethner, P. Dencker, and M. Ahlborg, A survey on bivariate Lagrange interpolation on Lissajous nodes, Dolomites Res. Notes Approx., 8 (special issue) (2015), pp. 23--36.Google Scholar

  • 15.  E. Fuselier and  G. Wright , Scattered data interpolation on embedded submanifolds with restricted positive definite Kernels: Sobolev error estimates , SIAM J. Numer. Anal. , 50 , 3 ( 2012 ), pp. 1753--1776. LinkISIGoogle Scholar

  • 16.  G.E. Fasshauer and M.J. McCourt, Kernel-Based Approximation Methods Using MATLAB, World Scientific, Singapore, 2015.Google Scholar

  • 17.  B. Fornberg and  N. Flyer , The Gibbs phenomenon for radial basis functions, in The Gibbs Phenomenon in Various Representations and Applications, A. Jerri, ed., Sampling Publishing, Potsdam , NY , 2011 , pp. 201 -- 224 . Google Scholar

  • 18.  B. Gleich and  J. Weizenecker , Tomographic imaging using the nonlinear response of magnetic particles , Nature , 435 ( 2005 ), pp. 1214 -- 1217 . CrossrefISIGoogle Scholar

  • 19.  D. Gottlieb and  C.W. Shu , On the Gibbs phenomenon and its resolution , SIAM Rev. , 39 ( 1997 ), pp. 644 -- 668 . LinkISIGoogle Scholar

  • 20.  A. Jerri, The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations, Kluwer Academic Publishers, Dordrecht, 1998.Google Scholar

  • 21.  J.-H. Jung , A note on the Gibbs phenomenon with multiquadric radial basis functions , Appl. Numer. Math. , 57 ( 2007 ), pp. 213 -- 219 . CrossrefISIGoogle Scholar

  • 22.  J.-H. Jung S. Gottlieb and  S.O. Kim , Iterative adaptive RBF methods for detection of edges in two-dimensional functions , Appl. Numer. Math. , 61 ( 2011 ), pp. 77 -- 91 . CrossrefISIGoogle Scholar

  • 23.  C. Kaethner W. Erb M. Ahlborg P. Szwargulski T. Knopp and  T.M. Buzug , Non-equispaced system matrix acquisition for magnetic particle imaging based on Lissajous node points , IEEE Trans. Med. Imaging , 35 ( 2016 ), pp. 2476 -- 2485 . CrossrefISIGoogle Scholar

  • 24.  T. Knopp and T.M. Buzug, Magnetic Particle Imaging, Springer-Verlag, Berlin, 2012.Google Scholar

  • 25.  T. Knopp S. Biederer T. Sattel J. Weizenecker B. Gleich J. Borgert and  T.M. Buzug , Trajectory analysis for magnetic particle imaging , Phys. Med. Biol. , 54 ( 2009 ), pp. 385 -- 397 . CrossrefISIGoogle Scholar

  • 26.  T.M. Lehmann C. Gonner and  K. Spitzer , Survey: Interpolation methods in medical image processing , IEEE Trans. Med. Imaging , 18 ( 1999 ), pp. 1049 -- 1075 . CrossrefISIGoogle Scholar

  • 27.  J. Mercer , Functions of positive and negative type and their connection with the theory of integral equations , Philos. Trans. Roy. Soc. , 209 ( 1909 ), pp. 415 -- 446 . Google Scholar

  • 28.  F.J. Narcowich J.D. Ward and  H. Wendland , Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , Math. Comp. , 74 ( 2005 ), pp. 743 -- 763 . CrossrefISIGoogle Scholar

  • 29.  C. Rieger, Sampling Inequalities and Applications, Dissertation, University of Göttingen, 2008.Google Scholar

  • 30.  L. Romani M. Rossini and  D. Schenone , Edge detection methods based on RBF interpolation , J. Comput. Appl. Math. , 349 ( 2019 ), pp. 532 -- 547 . CrossrefISIGoogle Scholar

  • 31.  M. Rossini , Interpolating functions with gradient discontinuities via variably scaled kernels , Dolomites Res. Notes Approx. , 11 ( 2018 ), pp. 3 -- 14 . ISIGoogle Scholar

  • 32.  V.S. Rychkov , On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains , J. Lond. Math. Soc. , 60 ( 1999 ), pp. 237 -- 257 . CrossrefISIGoogle Scholar

  • 33.  S.A. Sarra , Digital total variation filtering as postprocessing for radial basis function approximation methods , Comput. Math. Appl. , 52 ( 2006 ), pp. 1119 -- 1130 . CrossrefISIGoogle Scholar

  • 34.  R. Schaback Hilbert spaces for radial basis functions. I., in New Developments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math. 132, Birkhäuser , Basel , 1999 , pp. 255 -- 282 . Google Scholar

  • 35.  R. Schaback and  H. Wendland , Approximation by positive definite kernels, in Advanced Problems in Constructive Approximation, Birkhäuser , Basel , 2003 , pp. 203 -- 222 . Google Scholar

  • 36.  B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.Google Scholar

  • 37.  M. Sharifi M. Fathy and  M.T. Mahmoudi , A classified and comparative study of edge detection algorithms, in Proc. Int. Conf. on Inform. Technology: Coding and Computing, Las Vegas , NV , 2002 , pp. 117 -- 120 . Google Scholar

  • 38.  L.A. Shepp and  B.F. Logan , The Fourier reconstruction of a head section , IEEE Trans. Nucl. Sci. , NS-21 ( 1974 ), pp. 21 -- 43 . CrossrefISIGoogle Scholar

  • 39.  A.J. Smola and  B. Schölkopf , A tutorial on support vector regression , Stat. Comput. , 14 ( 2004 ), pp. 199 -- 222 . CrossrefISIGoogle Scholar

  • 40.  C.J. Solomon and T.P. Breckon, Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab, Wiley-Blackwell, Hoboken, NJ, 2010.Google Scholar

  • 41.  A. Takaki T. Soma A. Kojima K. Asao S. Kamada M. Matsumoto and  K. Murase , Improvement of image quality using interpolated projection data estimation method in SPECT , Ann. Nucl. Med. , 23 ( 2009 ), pp. 617 -- 626 . CrossrefISIGoogle Scholar

  • 42.  P. Thevenaz T. Blu and  M. Unser , Interpolation revisited , IEEE Trans. Med. Imaging , 19 ( 2000 ), pp. 739 -- 758 . CrossrefISIGoogle Scholar

  • 43.  H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983.Google Scholar

  • 44.  H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., Cambridge University Press, Cambridge, 2005.Google Scholar

  • 45.  A. Zygmund, Trigonometric Series, 3rd ed., Vols. I and II combined, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.Google Scholar