Abstract

In the article “A Rational QZ Method” by D. Camps, K. Meerbergen, and R. Vandebril [SIAM J. Matrix Anal. Appl., 40 (2019), pp. 943--972], we introduced rational QZ (RQZ) methods. Our theoretical examinations revealed that the convergence of the RQZ method is governed by rational subspace iteration, thereby generalizing the classical QZ method, whose convergence relies on polynomial subspace iteration. Moreover the RQZ method operates on a pencil more general than Hessenberg---upper triangular, namely, a Hessenberg pencil, which is a pencil consisting of two Hessenberg matrices. However, the RQZ method can only be made competitive to advanced QZ implementations by using crucial add-ons such as small bulge multishift sweeps, aggressive early deflation, and optimal packing. In this paper we develop these techniques for the RQZ method. In the numerical experiments we compare the results with state-of-the-art routines for the generalized eigenvalue problem and show that the presented method is competitive in terms of speed and accuracy.

MSC codes

  1. generalized eigenvalues
  2. rational QZ
  3. rational Krylov
  4. multishift
  5. aggressive early deflation
  6. Fortran implementation
  7. multipole

MSC codes

  1. 65F15
  2. 15A18

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. Adlerborn, B. K\aagström, and D. Kressner, A parallel QZ algorithm for distributed memory HPC systems, SIAM J. Sci. Comput., 36 (2014), pp. C480--C503, https://doi.org/10.1137/140954817.
2.
B. Adlerborn, B. K\aagström, and D. Kressner, PDHGEQZ User Guide, Report UMINF 15.12, Department of Computing Science, Ume\aa University, 2015.
3.
M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894--916, https://doi.org/10.1137/140998081.
4.
L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al., An updated set of basic linear algebra subprograms (BLAS), ACM Trans. Math. Softw., 28 (2002), pp. 135--151, https://doi.org/10.1145/567806.567807.
5.
R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra, Matrix market: A web resource for test matrix collections, in Proceedings of the IFIP TC2/WG2.5 Working Conference on Quality of Numerical Software: Assessment and Enhancement, Chapman & Hall, London, 1997, pp. 125--137, https://doi.org/10.1007/978-1-5041-2940-4_9.
6.
K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part I: Maintaining well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 929--947, https://doi.org/10.1137/s0895479801384573.
7.
K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part II: Aggressive early deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948--973, https://doi.org/10.1137/s0895479801384585.
8.
D. Camps, Pole Swapping Methods for the Eigenvalue Problem, Ph.D. thesis, KU Leuven, 2019.
9.
D. Camps, N. Mastronardi, R. Vandebril, and P. Van Dooren, Swapping $2 \times 2$ blocks in the Schur and generalized Schur form, J. Comput. Appl. Math., 373 (2019), pp. 1--8, https://doi.org/10.1016/j.cam.2019.05.022.
10.
D. Camps, K. Meerbergen, and R. Vandebril, A rational QZ method, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 943--972, https://doi.org/10.1137/18m1170480.
11.
D. Camps, R. Vandebril, D. S. Watkins, and T. Mach, On pole-swapping algorithms for the eigenvalue problem, Electron. Trans. Numer. Anal., 52 (2020), pp. 480--508, https://doi.org/10.1553/etna_vol52s480.
12.
H. Elman, A. Ramage, and D. Silvester, Algorithm $866$: IFISS, a MATLAB toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33 (2007), pp. 2--14, https://doi.org/10.1145/1236463.1236469.
13.
H. C. Elman, A. Ramage, and D. J. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Rev., 56 (2014), pp. 261--273, https://doi.org/10.1137/120891393.
14.
J. G. F. Francis, The QR Transformation---Part 2, Computer J., 4 (1962), pp. 332--345, https://doi.org/10.1093/comjnl/4.4.332.
15.
B. K\aagström, A direct method for reordering eigenvalues in the generalized real Schur form of a regular matrix pair $(A, B)$, in Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen, G. H. Golub, and B. L. R. De Moor, eds., Springer, Dordrecht, Netherlands, 1993, pp. 195--218, https://doi.org/10.1007/978-94-015-8196-7_11.
16.
B. K\aagström and D. Kressner, Multishift variants of the QZ algorithm with aggressive early deflation, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 199--227, https://doi.org/10.1137/05064521x.
17.
B. K\aagström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a regular matrix pair $(A, B)$ and condition estimation: Theory, algorithms and software, Numer. Algorithms, 12 (1996), pp. 369--407, https://doi.org/10.1007/bf02142813.
18.
L. Karlsson, D. Kressner, and B. Lang, Optimally packed chains of bulges in multishift QR algorithms, ACM Trans. Math. Softw., 40 (2014), 12, https://doi.org/10.1145/2559986.
19.
J. G. Korvink and E. B. Rudnyi, Oberwolfach benchmark collection, in Dimension Reduction of Large-Scale Systems, P. Benner, D. C. Sorensen, and V. Mehrmann, eds., Springer, Berlin, Heidelberg, 2005, pp. 311--315.
20.
T. Mach, T. Steel, R. Vandebril, and D. S. Watkins, Pole-swapping algorithms for alternating and palindromic eigenvalue problems, Vietnam J. Math., 48 (2020), pp. 679--701, https://doi.org/10.1007/s10013-020-00408-0.
21.
C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10 (1973), pp. 241--256, https://doi.org/10.1137/0710024.
22.
D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357--385, https://doi.org/10.1137/0613025.
23.
P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 121--135, https://doi.org/10.1137/0902010.
24.
E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, Intel math kernel library, in High-Performance Computing on the Intel Xeon Phi, Springer, 2014, pp. 167--188, https://doi.org/10.1007/978-3-319-06486-4_7.
25.
D. S. Watkins, The transmission of shifts and shift blurring in the QR algorithm, Linear Algebra Appl., 241-243 (1996), pp. 877--896, https://doi.org/10.1016/0024-3795(95)00545-5.
26.
D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM, Philadelphia, 2007, https://doi.org/10.1137/1.9780898717808.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 753 - 774
ISSN (online): 1095-7162

History

Submitted: 12 March 2019
Accepted: 19 February 2021
Published online: 27 May 2021

MSC codes

  1. generalized eigenvalues
  2. rational QZ
  3. rational Krylov
  4. multishift
  5. aggressive early deflation
  6. Fortran implementation
  7. multipole

MSC codes

  1. 65F15
  2. 15A18

Authors

Affiliations

Funding Information

Onderzoeksraad, KU Leuven https://doi.org/10.13039/501100004497 : C14/16/056, OT/14/074

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media