Abstract

In this work, we investigate a model-order reduction scheme for polynomial systems. We begin with defining the generalized multivariate transfer functions for the system. Based on this, we aim at constructing a reduced-order system, interpolating the defined generalized transfer functions at a given set of interpolation points. Furthermore, we provide a method, inspired by the Loewner approach for linear and (quadratic-)bilinear systems, to determine a good-quality reduced-order system in an automatic way. We also discuss the computational issues related to the proposed method and a potential application of a CUR matrix approximation in order to further speed up simulation of the reduced-order systems. We test the efficiency of the proposed method via two benchmark examples.

Keywords

  1. model order reduction
  2. polynomial dynamical systems
  3. transfer functions
  4. interpolation
  5. tensor algebra
  6. matricization

MSC codes

  1. 15A69
  2. 34C20
  3. 41A05
  4. 49M05
  5. 93A15
  6. 93C10
  7. 93C15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. I. Ahmad, P. Benner, and L. Feng, Interpolatory model reduction for quadratic-bilinear systems using error estimators, Eng. Comput., 36 (2018), pp. 25--44, https://doi.org/10.1108/EC-04-2018-0162.
2.
M. I. Ahmad, P. Benner, P. Goyal, and J. Heiland, Moment-matching based model reduction for Navier-Stokes type quadratic-bilinear descriptor systems, ZAMM Z. Angew. Math. Mech., 97 (2017), pp. 1252--1267, https://doi.org/10.1002/zamm.201500262.
3.
M. I. Ahmad, P. Benner, and I. Jaimoukha, Krylov subspace projection methods for model reduction of quadratic-bilinear systems, IET Control Theory Appl., 10 (2016), pp. 2010--2018, https://doi.org/10.1049/iet-cta.2016.0415.
4.
B. D. O. Anderson and A. C. Antoulas, Rational interpolation and state-variable realizations, Linear Algebra Appl., 137/138 (1990), pp. 479--509.
5.
A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713.
6.
A. C. Antoulas, C. A. Beattie, and S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, in Efficient Modeling and Control of Large-Scale Systems, J. Mohammadpour and K. M. Grigoriadis, eds., Springer, New York, 2010, pp. 3--58, https://doi.org/10.1007/978-1-4419-5757-3_1.
7.
A. C. Antoulas, I. V. Gosea, and A. C. Ionita, Model reduction of bilinear systems in the Loewner framework, SIAM J. Sci. Comput., 38 (2016), pp. B889--B916.
8.
A. C. Antoulas, S. Lefteriu, and A. C. Ionita, A tutorial introduction to the Loewner framework for model reduction, in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017, pp. 335--376, https://doi.org/10.1137/1.9781611974829.ch8.
9.
A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods for large-scale systems, Contemp. Math., 280 (2001), pp. 193--219.
10.
P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control, 53 (2008), pp. 2237--2251.
11.
M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An `empirical interpolation' method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 667--672.
12.
U. Baur, P. Benner, and L. Feng, Model order reduction for linear and nonlinear systems: A system-theoretic perspective, Arch. Comput. Methods Eng., 21 (2014), pp. 331--358, https://doi.org/10.1007/s11831-014-9111-2.
13.
P. Benner, P. Goyal, and I. Pontes Duff, Identification of Dominant Subspaces for Linear Structured Parametric Systems and Model Reduction, preprint, https://arxiv.org/abs/1910.13945, 2019.
14.
P. Benner and T. Breiten, Interpolation-based $\mathcal{H}_2$-model reduction of bilinear control systems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 859--885.
15.
P. Benner and T. Breiten, Two-sided projection methods for nonlinear model order reduction, SIAM J. Sci. Comput., 37 (2015), pp. B239--B260, https://doi.org/10.1137/14097255X.
16.
P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., Model Reduction and Approximation: Theory and Algorithms, Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017, https://doi.org/10.1137/1.9781611974829.
17.
P. Benner and P. Goyal, Multipoint interpolation of Volterra series and $\mathcal{H}_2$-model reduction for a family of bilinear descriptor systems, Systems Control Lett., 97 (2016), pp. 1--11, https://doi.org/10.1016/j.sysconle.2016.08.008.
18.
P. Benner and P. Goyal, Balanced Truncation Model Order Reduction for Quadratic-bilinear Systems, e-prints 1705.00160, https://arxiv.org/abs/1705.00160, 2017.
19.
P. Benner, P. Goyal, and S. Gugercin, $\mathcal{H}_2$-quasi-optimal model order reduction for quadratic-bilinear control systems, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 983--1032, https://doi.org/10.1137/16M1098280.
20.
P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, Springer, Berlin, 2005.
21.
K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242 (2013), pp. 623--647.
22.
S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), pp. 2737--2764, https://doi.org/10.1137/090766498.
23.
S. Chellappa, L. Feng, and P. Benner, An adaptive sampling approach for the reduced basis method, in Realization and Model Reduction of Dynamical Systems -- A Festschrift in Honor of 70th Birthday of Thanos Antoulas, C. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, eds., Springer, 2020, to appear.
24.
P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 14 (1995), pp. 639--649.
25.
G. Flagg and S. Gugercin, Multipoint Volterra series interpolation and $\mathcal{H}_2$ optimal model reduction of bilinear systems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 549--579, https://doi.org/10.1137/130947830.
26.
K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO systems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 328--349.
27.
I. V. Gosea and A. C. Antoulas, Data-driven model order reduction of quadratic-bilinear systems, Numer. Linear Algebra Appl., 25 (2018), e2200, https://doi.org/10.1002/nla.2200.
28.
E. J. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 1997.
29.
M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, eds., Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017, pp. 3--63, https://doi.org/10.1137/1.9781611974829.ch1.
30.
S. Gugercin, A. C. Antoulas, and C. Beattie, $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609--638, https://doi.org/10.1137/060666123.
31.
S. Gugercin, T. Stykel, and S. Wyatt, Model reduction of descriptor systems by interpolatory projection methods, SIAM J. Sci. Comput., 35 (2013), pp. B1010--B1033, https://doi.org/10.1137/130906635.
32.
G. Guiochon, A. Felinger, and D. G. Shirazi, Fundamentals of preparative and nonlinear chromatography, Academic Press, Boston, 2006.
33.
T. G. Kolda, Multilinear Operators for Higher-Order Decompositions, Technical report SAND2006-2081, Sandia National Laboratories, Albuquerque, NM, https://doi.org/10.2172/923081.
34.
B. Kramer and K. Willcox, Balanced Truncation Model Reduction for Lifted Nonlinear Systems, preprint, https://arxiv.org/abs/1907.12084, 2019.
35.
B. Kramer and K. Willcox, Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition, AIAA J., 57 (2019), pp. 2297--2307, https://doi.org/10.2514/1.J057791.
36.
M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis, Proc. Natl. Acad. Sci., 106 (2009), pp. 697--702.
37.
I. Maros, Computational Techniques of the Simplex Method, Internat. Ser. Oper. Res. Manag. 61, Springer, New York, 2003.
38.
A. J. Mayo and A. C. Antoulas, A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634--662.
39.
G. P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I--Convex underestimating problems, Math. Program., 10 (1976), pp. 147--175.
40.
S. Melchior, V. Legat, and P. Van Dooren, Gramian based model reduction of nonlinear MIMO systems, in Mathematical Theory of Networks and Systems, 2012, http://www.mtns2012.conference.net.au/Extended%20Abstract/MTNS2012_0170_paper.pdf. (Extended Abstract).
41.
N. Nguyen, A. T. Patera, and J. Peraire, A best points interpolation method for efficient approximation of parametrized functions, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 521--543.
42.
B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz, Localized discrete empirical interpolation method, SIAM J. Sci. Comput., 36 (2014), pp. A168--A192.
43.
A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, Unitext 92, Springer, Milan, 2016.
44.
A. Quarteroni and G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, MS&A. Model. Simul. Appl. 9, Springer, Cham, Switzerland, 2014.
45.
W. J. Rugh, Nonlinear System Theory, Johns Hopkins University Press Baltimore, MD, 1981.
46.
D. C. Sorensen and M. Embree, A DEIM induced CUR factorization, SIAM J. Sci. Comput., 38 (2016), pp. A1454--A1482.
47.
P. Van Dooren, K. Gallivan, and P.-A. Absil, $\mathcal{H}_2$-optimal model reduction of MIMO systems, Appl. Math. Lett., 21 (2008), pp. 1267--1273, https://doi.org/10.1016/j.aml.2007.09.015.
48.
D. C. Villemagne and R. E. Skelton, Model reduction using a projection formulation, Internat. J. Control, 46 (1987), pp. 2141--2169.
49.
S. Wang and Z. Zhang, Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling, J. Mach. Learn. Res., 14 (2013), pp. 2729--2769.
50.
Y. Xu and T. Zeng, Optimal $\mathcal{H}_2$ model reduction for large scale MIMO systems via tangential interpolation, Int. J. Numer. Anal. Model., 8 (2011), pp. 174--188.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A84 - A108
ISSN (online): 1095-7197

History

Submitted: 30 April 2019
Accepted: 23 September 2020
Published online: 5 January 2021

Keywords

  1. model order reduction
  2. polynomial dynamical systems
  3. transfer functions
  4. interpolation
  5. tensor algebra
  6. matricization

MSC codes

  1. 15A69
  2. 34C20
  3. 41A05
  4. 49M05
  5. 93A15
  6. 93C10
  7. 93C15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media