Abstract

Partial outer convexification has been used to derive relaxations of mixed-integer optimal control problems (MIOCPs) that are constrained by time-dependent differential equations. The family of sum-up rounding (SUR) algorithms provides a means to approximate feasible points of these relaxations, i.e., $[0,1]$-valued control trajectories, with $\{0,1\}$-valued points. The approximants computed by an SUR algorithm converge in a weak sense when the coarseness of the rounding grid of the SUR algorithm is driven to zero, which in turn induces norm convergence of the corresponding sequence of state vectors. We show that this approximation property can be transferred to MIOCPs with integer control variables distributed in more than one dimension when carrying out an appropriate grid refinement strategy. We deduce a norm convergence result for the state vector of elliptic PDE systems and provide computational results illustrating the applicability of the theoretical framework.

Keywords

  1. mixed-integer PDE-constrained optimization
  2. approximation theory

MSC codes

  1. 49M20
  2. 90C59
  3. 65L50
  4. 49J20
  5. 90C11

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. S. Aln\aes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS Project version 1.5, Arch. Numer. Softw., 3 (2015), https://doi.org/10.11588/ans.2015.100.20553.
2.
T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), pp. 261--282.
3.
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), pp. 492--526.
4.
C. Clason and K. Kunisch, Multi-bang control of elliptic systems, Ann. Inst. H. Poincaré Anal. Non-Linéaire, 31 (2014), pp. 1109--1130, https://doi.org/10.1016/j.anihpc.2013.08.005.
5.
J. Diestel and J. J. Uhl, Vector Measures, American Mathematical Society, Providence, RI, 1977, https://doi.org/10.1090/surv/015.
6.
M. Gerdts and S. Sager, Mixed-integer DAE optimal control problems: Necessary conditions and bounds, in Control and Optimization with Differential-Algebraic Constraints, L. Biegler, S. Campbell, and V. Mehrmann, eds., SIAM, Philadelphia, PA, 2012, pp. 189--212, https://doi.org/10.1137/9781611972252.ch9.
7.
M. Hahn and S. Sager, Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems, ANL/MCS Preprint P9037-0118, 2018, http://www.optimization-online.org/DB_FILE/2018/02/6457.pdf.
8.
F. M. Hante, Relaxation methods for hyperbolic PDE mixed-integer optimal control problems, Optimal Control Appl. Methods, 38 (2017), pp. 1103--1110, https://doi.org/10.1002/oca.2315.
9.
F. M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations, Comput. Optim. Appl., 55 (2013), pp. 197--225, https://doi.org/10.1007/s10589-012-9518-3.
10.
D. Hilbert, Über die stetige Abbildung einer Linie auf ein Flächenstück, Math. Ann., 38 (1891), pp. 459--460.
11.
M. N. Jung, G. Reinelt, and S. Sager, The Lagrangian relaxation for the combinatorial integral approximation problem, Optim. Methods Softw., 30 (2015), pp. 54--80, https://doi.org/10.1080/10556788.2014.890196.
12.
C. Kirches, F. Lenders, and P. Manns, Approximation properties and tight bounds for constrained mixed-integer optimal control, SIAM J. Control Optim., 58 (2020), pp. 1371--1402.
13.
P. Manns and C. Kirches, Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems, ESAIM Control Optim. Calc. Var., 26 (2020), 32.
14.
P. Manns and C. Kirches, Multi-dimensional Sum-Up Rounding using Hilbert curve iterates, PAMM. Proc. Appl. Math. Mech., 19 (2019), e201900065, https://doi.org/10.1002/pamm.201900065.
15.
J. R. Munkres, Topology, Prentice-Hall, Englewood Cliffs, NJ, 2000.
16.
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Springer Science & Business Media, New York, 2006, https://doi.org/10.1007/b97427.
17.
S. Sager, Numerical methods for Mixed-Integer Optimal Control Problems, Thesis, Interdisciplinary Center for Scientific Computing, Universität Heidelberg, 2005.
18.
S. Sager, Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control, J. Process Control, 19 (2009), pp. 1238--1247, https://doi.org/10.1016/j.jprocont.2009.03.008.
19.
S. Sager, H. Bock, and M. Diehl, The integer approximation error in mixed-integer optimal control, Math. Program., 133 (2012), pp. 1--23, https://doi.org/10.1007/s10107-010-0405-3.
20.
S. Sager, M. Jung, and C. Kirches, Combinatorial integral approximation, Math. Methods Oper. Res., 73 (2011), pp. 363--380, https://doi.org/10.1007/s00186-011-0355-4.
21.
S. Sager, G. Reinelt, and H. Bock, Direct methods with maximal lower bound for mixed-integer optimal control problems, Math. Program., 118 (2009), pp. 109--149, https://doi.org/10.1007/s10107-007-0185-6.
22.
G. Stadler, Elliptic optimal control problems with $L^1$-control cost and applications for the placement of control devices, Comput. Optim. Appl., 44 (2009), p. 159.
23.
E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press, Princeton, NJ, 2005, https://doi.org/10.1017/S0025557200181343.
24.
R. W. Steinberg and L. Floyd, An adaptive algorithm for spatial greyscale, Proc. Soc. Inform. Display, 17 (1976), pp. 75--77.
25.
L. Velho and J. d. M. Gomes, Digital halftoning with space filling curves, ACM SIGGRAPH Computer Graphics, 25 (1991), pp. 81--90.
26.
G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional, ESAIM Control Optim. Calc. Var., 17 (2011), pp. 858--886, https://doi.org/10.1051/cocv/2010027.
27.
J. Yu and M. Anitescu, Multidimensional sum-up rounding for integer programming in optimal experimental design, Math. Program., in press.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 3427 - 3447
ISSN (online): 1095-7170

History

Submitted: 8 May 2019
Accepted: 23 September 2020
Published online: 10 December 2020

Keywords

  1. mixed-integer PDE-constrained optimization
  2. approximation theory

MSC codes

  1. 49M20
  2. 90C59
  3. 65L50
  4. 49J20
  5. 90C11

Authors

Affiliations

Funding Information

German Federal Ministry of Education and Research : 05M17MBA-MOPhaPro, 05M18MBA-MOReNet, 01/S17089C-ODINE
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : Ki1839/1-1, Ki1839/1-2

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media