Abstract

The framework of inner product norm preserving relaxation Runge--Kutta methods [D. I. Ketcheson, SIAM J. Numer. Anal., 57 (2019), pp. 2850--2870] is extended to general convex quantities. Conservation, dissipation, or other solution properties with respect to any convex functional are enforced by the addition of a relaxation parameter that multiplies the Runge--Kutta update at each step. Moreover, other desirable stability (such as strong stability preservation) and efficiency (such as low storage requirements) properties are preserved. The technique can be applied to both explicit and implicit Runge--Kutta methods and requires only a small modification to existing implementations. The computational cost at each step is the solution of one additional scalar algebraic equation for which a good initial guess is available. The effectiveness of this approach is proved analytically and demonstrated in several numerical examples, including applications to high order entropy-conservative and entropy-stable semidiscretizations on unstructured grids for the compressible Euler and Navier--Stokes equations.

Keywords

  1. Runge--Kutta methods
  2. energy stability
  3. entropy stability
  4. monotonicity
  5. strong stability
  6. invariant conservation
  7. conservation laws
  8. fully discrete entropy stability
  9. compressible Euler and Navier--Stokes equations

MSC codes

  1. 65L20
  2. 65L06
  3. 65M12
  4. 76N99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhang, PETSc/TS: A Modern Scalable ODE/DAE Solver Library, https://arxiv.org/abs/1806.01437, 2018.
2.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Technical report ANL-95/11 (revision 3.10), Argonne National Laboratory, 2018.
3.
P. Bogacki and L. F. Shampine, A 3 (2) pair of Runge--Kutta formulas, Appl. Math. Lett., 2 (1989), pp. 321--325, https://doi.org/10.1016/0893-9659(89)90079-7.
4.
P. Bogacki and L. F. Shampine, An efficient Runge--Kutta (4, 5) pair, Comput. Math. Appl., 32 (1996), pp. 15--28, https://doi.org/10.1016/0898-1221(96)00141-1.
5.
R. P. Brent, Algorithms for Minimization Without Derivatives, Ser. Automat. Comput., Prentice-Hall, Englewood Cliffs, NJ, 1973.
6.
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Chichester, 2008.
7.
M. Calvo, D. Hernández-Abreu, J. I. Montijano, and L. Rández, On the preservation of invariants by explicit Runge--Kutta methods, SIAM J. Sci. Comput., 28 (2006), pp. 868--885, https://doi.org/10.1137/04061979X.
8.
M. Calvo, M. Laburta, J. Montijano, and L. Rández, Projection methods preserving Lyapunov functions, BIT, 50 (2010), pp. 223--241, https://doi.org/10.1007/s10543-010-0259-3.
9.
M. Calvo, M. Laburta, J. I. Montijano, and L. Rández, Runge--Kutta projection methods with low dispersion and dissipation errors, Adv. Comput. Math., 41 (2015), pp. 231--251, https://doi.org/10.1007/s10444-014-9355-2.
10.
M. H. Carpenter, T. C. Fisher, E. J. Nielsen, and S. H. Frankel, Entropy stable spectral collocation schemes for the Navier-Stokes equations: Discontinuous interfaces, SIAM J. Sci. Comput., 36 (2014), pp. B835--B867, https://doi.org/10.1137/130932193.
11.
M. H. Carpenter and C. A. Kennedy, Fourth-Order 2N Runge--Kutta Schemes, Technical report NASA-TM-109112, NASA, 1994, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940028444.pdf.
12.
M. H. Carpenter, M. Parsani, E. J. Nielsen, and T. C. Fisher, Towards an entropy stable spectral element framework for computational fluid dynamics, in Proceedings of the 54th AIAA Aerospace Sciences Meeting, AIAA 2016-1058, American Institute of Aeronautics and Astronautics, 2016.
13.
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, 2010.
14.
L. Dalcin, D. B. Rojas, S. Zampini, D. C. Del Rey Fernández, M. H. Carpenter, and M. Parsani, Conservative and entropy stable solid wall boundary conditions for the compressible Navier--Stokes equations: Adiabatic wall and heat entropy transfer, J. Comput. Phys., 397 (2019).
15.
K. Dekker and J. G. Verwer, Stability of Runge--Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monogr. 2, North-Holland, Amsterdam, 1984.
16.
N. Del Buono and C. Mastroserio, Explicit methods based on a class of four stage fourth order Runge--Kutta methods for preserving quadratic laws, J. Comput. Appl. Math., 140 (2002), pp. 231--243, https://doi.org/10.1016/S0377-0427(01)00398-3.
17.
D. C. D. R. Fernández, M. H. Carpenter, L. Dalcin, L. Fredrich, D. Rojas, A. R. Winters, G. J. Gassner, S. Zampini, and M. Parsani, Entropy stable $p$-nonconforming discretizations with the summation-by-parts property for the compressible Euler equations, SIAM J. Sci. Comput., 2019, submitted.
18.
D. C. D. R. Fernández, M. H. Carpenter, L. Dalcin, L. Fredrich, A. R. Winters, G. J. Gassner, and M. Parsani, Entropy stable $p$-nonconforming discretizations with the summation-by-parts property for the compressible Navier--Stokes equations, Comput. & Fluids, 2019, submitted.
19.
L. Friedrich, G. Schnücke, A. R. Winters, D. C. D. R. Fernández, G. J. Gassner, and M. H. Carpenter, Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws, J. Sci. Comput., 80 (2019), pp. 175--222, https://doi.org/10.1007/s10915-019-00933-2.
20.
S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge--Kutta and Multistep Time Discretizations, World Scientific, Singapore, 2011.
21.
V. Grimm and G. Quispel, Geometric integration methods that preserve Lyapunov functions, BIT, 45 (2005), pp. 709--723, https://doi.org/10.1007/s10543-005-0034-z.
22.
E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math. 31, Springer-Verlag, Berlin, 2006, https://doi.org/10.1007/3-540-30666-8.
23.
E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 2008, https://doi.org/10.1007/978-3-540-78862-1.
24.
I. Higueras, Monotonicity for Runge--Kutta methods: Inner product norms, J. Sci. Comput., 24 (2005), pp. 97--117, https://doi.org/10.1007/s10915-004-4789-1.
25.
E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open Source Scientific Tools for Python, 2001, http://www.scipy.org.
26.
D. I. Ketcheson, Highly efficient strong stability-preserving Runge--Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30 (2008), pp. 2113--2136, https://doi.org/10.1137/07070485X.
27.
D. I. Ketcheson, Relaxation Runge--Kutta methods: Conservation and stability for inner-product norms, SIAM J. Numer. Anal., 57 (2019), pp. 2850--2870.
28.
M. G. Knepley and D. A. Karpeev, Mesh algorithms for PDE with Sieve I: Mesh distribution, Sci. Program., 17 (2009), pp. 215--230, https://doi.org/10.3233/SPR-2009-0249.
29.
H. Kojima, Invariants preserving schemes based on explicit Runge--Kutta methods, BIT, 56 (2016), pp. 1317--1337, https://doi.org/10.1007/s10543-016-0608-y.
30.
M. Laburta, J. I. Montijano, L. Rández, and M. Calvo, Numerical methods for non conservative perturbations of conservative problems, Comput. Phys. Commun., 187 (2015), pp. 72--82, https://doi.org/10.1016/j.cpc.2014.10.012.
31.
P. G. LeFloch, J.-M. Mercier, and C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal., 40 (2002), pp. 1968--1992, https://doi.org/10.1137/S003614290240069X.
32.
C. Lozano, Entropy production by explicit Runge--Kutta schemes, J. Sci. Comput., 76 (2018), pp. 521--565, https://doi.org/10.1007/s10915-017-0627-0.
33.
J. J. Moré, B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK-1, Technical report ANL-80-74, Argonne National Laboratory, Argonne, Illinois, 1980.
34.
P. Öffner, J. Glaubitz, and H. Ranocha, Analysis of artificial dissipation of explicit and implicit time-integration methods, Int. J. Numer. Anal. Model., to appear.
35.
M. Parsani, M. H. Carpenter, T. C. Fisher, and E. J. Nielsen, Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier--Stokes equations, SIAM J. Sci. Comput., 38 (2016), pp. A3129--A3162.
36.
M. Parsani, M. H. Carpenter, and E. J. Nielsen, Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier--Stokes equations, J. Comput. Phys., 290 (2015), pp. 132--138.
37.
M. Parsani, M. H. Carpenter, and E. J. Nielsen, Entropy stable wall boundary conditions for the three-dimensional compressible Navier--Stokes equations, J. Comput. Phys., 292 (2015), pp. 88--113.
38.
H. Ranocha, Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods, GEM Int. J. Geomath., 8 (2017), pp. 85--133, https://doi.org/10.1007/s13137-016-0089-9.
39.
H. Ranocha, On Strong Stability of Explicit Runge--Kutta Methods for Nonlinear Semibounded Operators, 2018, https://arxiv.org/abs/1811.11601.
40.
H. Ranocha, J. Glaubitz, P. Öffner, and T. Sonar, Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators, Appl. Numer. Math., 128 (2018), pp. 1--23, https://doi.org/10.1016/j.apnum.2018.01.019.
41.
H. Ranocha and D. I. Ketcheson, ConvexRelaxationRungeKutta. Relaxation Runge--Kutta Methods for Convex Functionals, 2019\ https://github.com/ranocha/ConvexRelaxationRungeKutta.
42.
H. Ranocha and P. Öffner, $L_2$ stability of explicit Runge--Kutta schemes, J. Sci. Comput., 75 (2018), pp. 1040--1056, https://doi.org/10.1007/s10915-017-0595-4.
43.
C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439--471, https://doi.org/10.1016/0021-9991(88)90177-5.
44.
J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences, NASA CR-2014-218178 (2014).
45.
E. Süli and D. F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, Cambridge, 2003, https://doi.org/10.1017/CBO9780511801181.
46.
Z. Sun and C.-W. Shu, Stability of the fourth order Runge--Kutta method for time-dependent partial differential equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255--284, https://doi.org/10.4310/AMSA.2017.v2.n2.a3.
47.
Z. Sun and C.-W. Shu, Strong stability of explicit Runge--Kutta time discretizations, SIAM J. Numer. Anal., 57 (2019), pp. 1158--1182.
48.
M. Svärd and H. Özcan, Entropy-stable schemes for the Euler equations with far-field and wall boundary conditions, J. Sci. Comput., 58 (2014), pp. 61--89.
49.
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comp., 49 (1987), pp. 91--103, https://doi.org/10.1090/S0025-5718-1987-0890255-3.
50.
E. Tadmor, From semidiscrete to fully discrete: Stability of Runge--Kutta schemes by the energy method II, in Collected Lectures on the Preservation of Stability under Discretization, D. J. Estep and S. Tavener, eds., Proc. Appl. Math. 109, SIAM, Philadelphia, 2002, pp. 25--49.
51.
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12 (2003), pp. 451--512, https://doi.org/10.1017/S0962492902000156.
52.
E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, J. Hyperbolic Differ. Equ., 3 (2006), pp. 529--559, https://doi.org/10.1142/S0219891606000896.
53.
V. A. Titarev and E. F. Toro, Finite volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys., 201 (2014), pp. 238--260.
54.
J. H. Verner, Explicit Runge--Kutta methods with estimates of the local truncation error, SIAM J. Numer. Anal., 15 (1978), pp. 772--790, https://doi.org/10.1137/0715051.
55.
N. Wintermeyer, A. R. Winters, G. J. Gassner, and D. A. Kopriva, An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340 (2017), pp. 200--242.
56.
A. R. Winters and G. J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304 (2016), pp. 72--108.
57.
H. Zakerzadeh and U. S. Fjordholm, High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA J. Numer. Anal., 36 (2016), pp. 633--654, https://doi.org/10.1093/imanum/drv020.
58.
X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. Roy. A, 467 (2011), pp. 2752--2776, https://doi.org/10.1098/rspa.2011.0153.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A612 - A638
ISSN (online): 1095-7197

History

Submitted: 22 May 2019
Accepted: 6 November 2019
Published online: 12 March 2020

Keywords

  1. Runge--Kutta methods
  2. energy stability
  3. entropy stability
  4. monotonicity
  5. strong stability
  6. invariant conservation
  7. conservation laws
  8. fully discrete entropy stability
  9. compressible Euler and Navier--Stokes equations

MSC codes

  1. 65L20
  2. 65L06
  3. 65M12
  4. 76N99

Authors

Affiliations

Funding Information

King Abdullah University of Science and Technology https://doi.org/10.13039/501100004052

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media