Methods and Algorithms for Scientific Computing

Energy-Decaying Extrapolated RK--SAV Methods for the Allen--Cahn and Cahn--Hilliard Equations

Abstract

We construct and analyze a class of extrapolated and linearized Runge--Kutta (RK) methods, which can be of arbitrarily high order, for the time discretization of the Allen--Cahn and Cahn--Hilliard phase field equations, based on the scalar auxiliary variable (SAV) formulation. We prove that the proposed $q$-stage RK--SAV methods have $q$th-order convergence in time and satisfy a discrete version of the energy decay property. Numerical examples are provided to illustrate the discrete energy decay property and accuracy of the proposed methods.

Keywords

  1. Allen--Cahn equation
  2. Cahn--Hilliard equation
  3. energy decay
  4. scalar auxiliary variable
  5. Runge--Kutta methods
  6. extrapolation
  7. Gauss methods
  8. Radau IIA methods
  9. algebraic stability

MSC codes

  1. 65M12
  2. 65L06

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085--1095.
2.
S. Badia, F. Guillén-González, and J. V. Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys., 230 (2011), pp. 1686--1706.
3.
S. Bartels and R. Müller, Quasi-optimal and robust a posteriori error estimates in $L^\infty(L^2)$ for the approximation of Allen--Cahn equations past singularities, Math. Comp., 80 (2011), pp. 761--780.
4.
S. Bartels, R. Müller, and C. Ortner, Robust a priori and a posteriori error analysis for the approximation of Allen--Cahn and Ginzburg--Landau equations past topological changes, SIAM J. Numer. Anal., 49 (2011), pp. 110--134.
5.
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I: interfacial free energy, J. Chem. Phys., 28 (1958), pp. 258--267.
6.
Y. Cai, H. Choi, and J. Shen, Error estimates for time discretizations of a phase-field model for two-phase incompressible flow, Numer. Math., 137 (2017), pp. 417--449.
7.
Y. Cai and J. Shen, Error estimates for a fully discretized scheme to a Cahn--Hilliard phase-field model for two-phase incompressible flows, Math. Comp., 87 (2018), pp. 2057--2090.
8.
W. Chen, Y. Liu, C. Wang, and S. M. Wise, Convergence analysis of a fully discrete finite difference scheme for the Cahn--Hilliard--Hele--Shaw equation, Math. Comp., 85 (2016), pp. 2231--2257.
9.
Q. Cheng and J. Shen, Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model, SIAM J. Sci. Comput., 40 (2018), pp. A3982--A4006.
10.
D. Cohen and E. Hairer, Linear energy-preserving integrators for Poisson systems, BIT, 51 (2011), pp. 91--101.
11.
M. Dahlby, B. Owren, and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A, 44 (2011) 305205.
12.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1988.
13.
W. E and J. G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), pp. 1017--1057.
14.
C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), pp. 1622--1663.
15.
D. J. Eyre, Unconditionally gradient stable time marching the Cahn--Hilliard equation, Mater. Res. Soc. Symp. Proc., 529 (1998), pp. 39--46.
16.
X. Feng, Y. Li, and Y. Xing, Analysis of mixed interior penalty discontinuous Galerkin method for the Cahn--Hilliard equation and the Hele--Shaw flow, SIAM J. Numer. Anal., 54 (2016), pp. 825--847.
17.
X. Feng and A. Prohl, Numerical analysis of the Allen--Cahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), pp. 33--65.
18.
X. Feng and A. Prohl, Numerical analysis of the Cahn--Hilliard equation and approximation for the Hele--Shaw problem, Interfaces Free Bound., 7 (2005), pp. 1--28.
19.
Y. Gong and J. Zhao, Energy-stable Runge--Kutta schemes for gradient flow models using the energy quadratization approach, Appl. Math. Lett., 94 (2019), pp. 224--231.
20.
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), pp. 449--467.
21.
F. Guillén-González and G. Tierra, On linear schemes for a Cahn--Hilliard diffuse interface model, J. Comput. Phys., 234 (2013), pp. 140--171.
22.
E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Ind. Appl. Math., 5 (2010), pp. 73--84.
23.
E. Hairer and C. Lubich, Energy-diminishing integration of gradient systems, IMA J. Numer. Anal., 34 (2014), pp. 452--461.
24.
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential--Algebraic Problems, 2$\text{nd}$ ed., Springer Ser. Comput. Math. 14, Springer, New York, 2002.
25.
Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), pp. 5323--5339.
26.
D. Li and Z. Qiao, On second order semi-implicit Fourier spectral methods for 2D Cahn--Hilliard equations, J. Sci. Comput., 70 (2017), pp. 301--341.
27.
D. Li, Z. Qiao, and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations, SIAM J. Numer. Anal., 54 (2016), pp. 1653--1681.
28.
X. Li, J. Shen, and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient flows, Math. Comp., 88 (2019), pp. 2047--2068.
29.
C. Lubich and A. Ostermann, Runge--Kutta approximation of quasi-linear parabolic equations, Math. Comp., 64 (1995), pp. 601--627.
30.
R. I. McLachlan, G. R. W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. A, 357 (1999), pp. 1021--1045.
31.
R. Norton and G. Quispel, Discrete gradient methods for preserving a first integral of an ordinary differential equation, Discrete Contin. Dyn. Syst., 34 (2012), pp. 1147--1170.
32.
J. Shen, C. Wang, X. Wang, and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich--Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), pp. 105--125.
33.
J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), pp. 2895--2912.
34.
J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), pp. 407--416.
35.
J. Shen and X. Yang, Numerical approximations of Allen--Cahn and Cahn--Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669--1691.
36.
C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49 (2011), pp. 945--969.
37.
L. Wang and H. Yu, On efficient second order stabilized semi-implicit schemes for the Cahn--Hilliard phase-field equation, J. Sci. Comput., 77 (2018), pp. 1185--1209.
38.
C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), pp. 1759--1779.
39.
X. Yang, Error analysis of stabilized semi-implicit method of Allen--Cahn equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), pp. 1057--1070.
40.
X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), pp. 294--316.
41.
X. Yang and L. Ju, Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model, Comput. Methods Appl. Mech. Engrg., 315 (2017), pp. 691--712.
42.
X. Yang and L. Ju, Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model, Comput. Methods Appl. Mech. Engrg., 318 (2017), pp. 1005--1029.
43.
X. Yang, J. Zhao, and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method, J. Comput. Phys., 333 (2017), pp. 104--127.
44.
X. Yang, J. Zhao, Q. Wang, and J. Shen, Numerical approximations for a three components Cahn--Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), pp. 1993--2030.
45.
P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), pp. 293--317.
46.
J. Zhao, X. Yang, J. Li, and Q. Wang, Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals, SIAM J. Sci. Comput., 38 (2016), pp. A3264--A3290.
47.
J. Zhu, L. Chen, J. Shen, and V. Tikare, Coarsening kinetics from a variable mobility Cahn--Hilliard equation---application of semi-implicit Fourier spectral method, Phys. Rev. E, 60 (1999), pp. 3564--3572.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3703 - A3727
ISSN (online): 1095-7197

History

Submitted: 28 May 2019
Accepted: 23 September 2019
Published online: 21 November 2019

Keywords

  1. Allen--Cahn equation
  2. Cahn--Hilliard equation
  3. energy decay
  4. scalar auxiliary variable
  5. Runge--Kutta methods
  6. extrapolation
  7. Gauss methods
  8. Radau IIA methods
  9. algebraic stability

MSC codes

  1. 65M12
  2. 65L06

Authors

Affiliations

Funding Information

National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 11771162
Research Grants Council, University Grants Committee https://doi.org/10.13039/501100002920 : 15300519

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media