Abstract

We are concerned with the design of Model Predictive Control (MPC) schemes such that asymptotic stability of the resulting closed loop is guaranteed---even if the linearization at the desired set point fails to be stabilizable. Therefore, we propose constructing the stage cost based on the homogeneous approximation and rigorously show that applying MPC yields an asymptotically stable closed-loop behavior if the homogeneous approximation is asymptotically null controllable. To this end, we verify cost controllability---a condition relating the current state, the stage cost, and the growth of the value function with respect to time---for this class of systems in order to provide stability and performance guarantees for the proposed MPC scheme without stabilizing terminal costs or constraints.

Keywords

  1. cost controllability
  2. homogeneity
  3. homogeneous approximation
  4. model predictive control
  5. stability guarantee

MSC codes

  1. 49N35
  2. 93B52
  3. 93C10
  4. 93C15
  5. 93D15
  6. 93D20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. d'Andréa-Novel, J.-M. Coron, and W. Perruquetti, Small-time Stabilization of Nonholonomic or Underactuated Mechanical Systems: The Unicycle and The Slider Examples, preprint, https://hal.archives-ouvertes.fr/hal-02140549, 2019.
2.
V. Andrieu, L. Praly, and A. Astolfi, Homogeneous approximation, recursive observer design, and output feedback, SIAM J. Control Optim., 47 (2008), pp. 1814--1850, https://doi.org/10.1137/060675861.
3.
J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss. 264, Springer-Verlag, Berlin, 1984.
4.
A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd ed., Comm. Control Engrg. Ser., Springer-Verlag, Berlin, 2005.
5.
S. Bhat and D. Bernstein, Geometric homogeneity with applications to finite-time stability, Math. Control Signals Systems, 17 (2005), pp. 101--127.
6.
A. Boccia, L. Grüne, and K. Worthmann, Stability and feasibility of state constrained MPC without stabilizing terminal constraints, Systems Control Lett., 72 (2014), pp. 14--21.
7.
R. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (Houghton, MI, 1982), Progr. Math. 27, Birkhäuser Boston, Boston, 1983, pp. 181--191.
8.
H. Chen and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica J. IFAC, 34 (1998), pp. 1205--1217.
9.
J.-M. Coron, A necessary condition for feedback stabilization, Systems Control Lett., 14 (1990), pp. 227--232.
10.
J.-M. Coron, Control and Nonlinearity, Math. Surveys Monogr. 136, AMS, Providence, RI, 2007.
11.
J.-M. Coron and L. Praly, Adding an integrator for the stabilization problem, Systems Control Lett., 17 (1991), pp. 89--104.
12.
M. Forbes, R. Patwardhan, H. Hamadah, and R. Gopaluni, Model predictive control in industry: Challenges and opportunities, IFAC-PapersOnLine, 48 (2015), pp. 531--538.
13.
L. Grüne, Homogeneous state feedback stabilization of homogenous systems, SIAM J. Control Optim., 38 (2000), pp. 1288--1308, https://doi.org/10.1137/S0363012998349303.
14.
L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems, SIAM J. Control Optim., 48 (2009), pp. 1206--1228, https://doi.org/10.1137/070707853.
15.
L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Theory and Algorithms, 2nd ed., Comm. Control Engrg. Ser., Springer, Cham, 2017.
16.
L. Grüne, J. Pannek, M. Seehafer, and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with time varying control horizon, SIAM J. Control Optim., 48 (2010), pp. 4938--4962, https://doi.org/10.1137/090758696.
17.
H. Hermes, Homogeneous feedback controls for homogeneous systems, Systems Control Lett., 24 (1995), pp. 7--11.
18.
M. Kawski, Stability and nilpotent approximations, in Proceedings of the 27th IEEE Conference on Decision and Control, Vol. 2, New Orleans, LA, IEEE, 1988, pp. 1244--1248.
19.
M. Kawski, Homogeneous stabilizing feedback laws, Control Theory Adv. Tech., 6 (1990), pp. 497--516.
20.
C. Kellett, A compendium of comparison function results, Math. Control Signals Systems, 26 (2014), pp. 339--374.
21.
B. Kouvaritakis and M. Cannon, Model Predictive Control, Springer, Cham, 2016.
22.
J. Lee, Model predictive control: Review of the three decades of development, Int. J. Control Autom., 9 (2011), pp. 415--424.
23.
D. Liberzon, Switching in Systems and Control, Systems Control Found. Appl., Birkhäuser Boston, Boston, 2003.
24.
P. Morin, J.-B. Pomet, and C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop, SIAM J. Control Optim., 38 (1999), pp. 22--49, https://doi.org/10.1137/S0363012997315427.
25.
P. Morin and C. Samson, Time-varying exponential stabilization of chained form systems based on a backstepping technique, in Proceedings of the 35th IEEE Conference on Decision and Control, Vol. 2, New Orleans, LA, IEEE, 1996, pp. 1449--1454.
26.
M. Müller and K. Worthmann, Quadratic costs do not always work in MPC, Automatica J. IFAC, 82 (2017), pp. 269--277.
27.
J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory, Computation, and Design, Nob Hill Publishing, 2017.
28.
M. Reble and F. Allgöwer, Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems, Automatica J. IFAC, 48 (2012), pp. 1812--1817.
29.
L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems Control Lett., 19 (1992), pp. 467--473.
30.
E. Sontag and H. Sussmann, Nonsmooth control-Lyapunov functions, in Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 3, New Orleans, LA, IEEE, 1995, pp. 2799--2805.
31.
S. Tuna, M. Messina, and A. Teel, Shorter horizons for model predictive control, in Proceedings of the American Control Conference, Minneapolis, MN, IEEE, 2006, pp. 863--868.
32.
K. Worthmann, Stability Analysis of Unconstrained Receding Horizon Control Schemes, Ph.D. thesis, University of Bayreuth, Bayreuth, Germany, 2011.
33.
K. Worthmann, M. Mehrez, M. Zanon, R. Gosine, G. Mann, and M. Diehl, Regulation of differential drive robots using continuous time MPC without stabilizing constraints or costs, IFAC-PapersOnLine, 48 (2015), pp. 129--135.
34.
K. Worthmann, M. Mehrez, M. Zanon, G. Mann, R. Gosine, and M. Diehl, Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs, IEEE Trans. Control Syst. Technol., 24 (2016), pp. 1394--1406.
35.
K. Worthmann, M. Reble, L. Grüne, and F. Allgöwer, The role of sampling for stability and performance in unconstrained nonlinear model predictive control, SIAM J. Control Optim., 52 (2014), pp. 581--605, https://doi.org/10.1137/12086652X.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2979 - 2996
ISSN (online): 1095-7138

History

Submitted: 4 June 2019
Accepted: 8 July 2020
Published online: 13 October 2020

Keywords

  1. cost controllability
  2. homogeneity
  3. homogeneous approximation
  4. model predictive control
  5. stability guarantee

MSC codes

  1. 49N35
  2. 93B52
  3. 93C10
  4. 93C15
  5. 93D15
  6. 93D20

Authors

Affiliations

Funding Information

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley https://doi.org/10.13039/100007247

Funding Information

Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR Finite4SoS

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : WO 2056/6-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media