Unique Solvability of a System of Ordinary Differential Equations Modeling a Warm Cloud Parcel
Abstract
We analyze the solvability of a system of ordinary differential equations modeling a warm cloud. A unique feature of this model is the automatic onset of nucleation when the moist air parcel becomes supersaturated; this is made possible by a non-Lipschitz right-hand side of the differential equation, which allows for nontrivial smooth solutions. Here we prove under mild assumptions on the external forcing that this system of equations has a unique physically consistent solution, i.e., a solution with a nonzero droplet population in the supersaturated regime.
1. , Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations ,
World Scientific ,Singapore , 1993 .2. , Uniqueness for ordinary differential equations , Math. Syst. Theory , 9 ( 1976 ), pp. 359 -- 367 .
3. , On restricted uniqueness for systems of ordinary differential equations , Proc. Amer. Math. Soc. , 37 ( 1973 ), pp. 100 -- 104 .
4. , The primitive equations of the atmosphere in presence of vapour saturation , Nonlinearity , 28 ( 2015 ), pp. 625 -- 668 .
5. , Untangling microphysical impacts on deep convection applying a novel modeling methodology , J. Atmos. Sci. , 72 ( 2015 ), pp. 2446 -- 2464 .
6. , Global well-posedness for passively transported nonlinear moisture dynamics with phase changes , Nonlinearity , 30 ( 2017 ), pp. 3676 -- 3718 .
7. , Uniqueness for a class of nonlinear initial value problems , J. Math. Anal. Appl. , 130 ( 1988 ), pp. 467 -- 473 .
8. S. Kichenassamy, Fuchsian Reduction, Birkhäuser, Boston, 2007.
9. , Blow-up surfaces for nonlinear wave equations, I , Comm. Partial Differential Equations , 18 ( 1993 ), pp. 431 -- 452 .
10. , Blow-up surfaces for nonlinear wave equations, II , Comm. Partial Differential Equations , 18 ( 1993 ), pp. 1869 -- 1899 .
11. , Parameterization of bulk condensation in numerical cloud models , J. Atmos. Sci. , 51 ( 1994 ), pp. 2957 -- 2974 .
12. , A tropical atmosphere model with moisture: Global well-posedness and relaxation limit , Nonlinearity , 29 ( 2016 ), pp. 2674 -- 2714 .
13. , Review of the vapour pressures of ice and supercooled water for atmospheric applications , Q. J. R. Meteorol. Soc. , 131 ( 2005 ), pp. 1539 -- 1565 .
14. , A model for warm clouds with implicit droplet activation, avoiding saturation adjustment , Math. Clim. Weather Forecast. , 4 ( 2018 ), pp. 50 -- 78 .
15. , Microphysics of Clouds and Precipitation , Springer , Heidelberg , 2010 .
16. , Existence and properties of spherically symmetric static fluid bodies with a given equation of state , Classical Quantum Gravity , 8 ( 1991 ), pp. 985 -- 1000 .
17. , A Short Course in Cloud Physics , 3 rd ed., Pergamon Press , Oxford , 1989 .
18. , A two-moment cloud microphysics parameterization for mixed-phase clouds. Part I: Model description , Meteorol. Atmos. Phys. , 92 ( 2006 ), pp. 45 -- 66 .
19. , private communication , 2019 .
20. , Ordinary Differential Equations and Dynamical Systems , Amer. Math. Soc. , Providence , RI , 2012 .
21. , Ordinary Differential Equations , Springer , New York , 1998 .
22. . Wend, Existence and uniqueness of solutions of ordinary differential equations , Proc. Amer. Math. Soc. , 23 ( 1969 ), pp. 27 -- 33 .