Abstract

In this follow-up of [A. Kirsch and A. Rieder, Inverse Problems, 32 (2016), 085001] we generalize our previous abstract results so that they can be applied to the viscoelastic wave equation which serves as a forward model for full waveform inversion (FWI) in seismic imaging including dispersion and attenuation. FWI is the nonlinear inverse problem of identifying parameter functions of the viscoelastic wave equation from measurements of the reflected wave field. Here we rigorously derive rather explicit analytic expressions for the Fréchet derivative and its adjoint (adjoint state method) of the underlying parameter-to-solution map. These quantities enter crucially Newton-like gradient decent solvers for FWI. Moreover, we provide the second Fréchet derivative and a related adjoint as ingredients to second-degree solvers.

Keywords

  1. full waveform seismic inversion
  2. viscoelastic wave equation
  3. adjoint state method
  4. nonlinear inverse and ill-posed problem
  5. higher order Fréchet derivative

MSC codes

  1. 35F10
  2. 35R30
  3. 86A22

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. O. Blanch, J. O. A. Robertsson, and W. W. Symes, Modeling of a constant Q: Methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique, Geophysics, 60 (1995), pp. 176--184, https://doi.org/10.1190/1.1443744.
2.
T. Bohlen, Viskoelastische FD-Modellierung seismischer Wellen zur Interpretation gemessener Seismogramme, Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 1998, https://bit.ly/2LM0SWr.
3.
T. Bohlen, Parallel 3-D viscoelastic finite difference seismic modelling, Comput. Geosci., 28 (2002), pp. 887--899, https://doi.org/10.1016/S0098-3004(02)00006-7.
4.
J. Dieudonné, Foundations of Modern Analysis, Pure Appl. Math. 10-I, Academic Press, New York, NY, 1969.
5.
G. Fabien-Ouellet, E. Gloaguen, and B. Giroux, Time domain viscoelastic full waveform inversion, Geophysic. J. Int., 209 (2017), pp. 1718--1734, https://doi.org/10.1093/gji/ggx110.
6.
A. Fichtner, Full Seismic Waveform Modelling and Inversion, Adv. Geophy. Environ. Mech. Math., Springer-Verlag, Berlin, 2011, https://doi.org/10.1007/978-3-642-15807-0.
7.
A. Fichtner and J. Trampert, Hessian kernels of seismic data functionals based upon adjoint techniques, Geophys. J. Int., 185 (2011), pp. 775--798, https://doi.org/10.1111/j.1365-246X.2011.04966.x.
8.
F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems, SIAM J. Numer. Anal., 37 (2000), pp. 587--620, https://doi.org/10.1137/S0036142998341246.
9.
B. Hofmann, On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces, Tech. Report 97-8, Fakultät für Mathematik, Technische Universität Chemnitz-Zwickau, D-09107 Chemnitz, Germany, 1997, http://www.qucosa.de/fileadmin/data/qucosa/documents/4197/data/a008.pdf.
10.
A. Kirsch and A. Rieder, Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity, Inverse Problems, 32 (2016), 085001, 24, https://doi.org/10.1088/0266-5611/32/8/085001.
11.
P. Monk, Finite Element Methods for Maxwell's Equations, Numer. Math. Sci. Comput., Oxford University Press, New York, 2003, https://doi.org/10.1093/acprof:oso/9780198508885.001.0001.
12.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer-Verlag, New York, 1983, https://doi.org/10.1007/978-1-4612-5561-1.
13.
J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74 (2009), pp. 1--26, https://doi.org/10.1190/1.3238367.
14.
P. Yang, R. Brossier, L. Métivier, and J. Virieux, A review on the systematic formulation of $3$D multiparameter full waveform inversion in viscoelastic medium, Geophys. J. Int., 207 (2016), pp. 129--149, https:/doi.org/10.1093/gji/ggw262.
15.
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems, Springer-Verlag, New York, 1986.
16.
U. Zeltmann, The Viscoelastic Seismic Model: Existence, Uniqueness and Differentiability with Respect to Parameters, Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2018, http://dx.doi.org/10.5445/IR/1000093989.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 2639 - 2662
ISSN (online): 1095-712X

History

Submitted: 19 June 2019
Accepted: 16 October 2019
Published online: 17 December 2019

Keywords

  1. full waveform seismic inversion
  2. viscoelastic wave equation
  3. adjoint state method
  4. nonlinear inverse and ill-posed problem
  5. higher order Fréchet derivative

MSC codes

  1. 35F10
  2. 35R30
  3. 86A22

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : 258734477 - SFB 1173

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media