Abstract

In the setting of step 2 sub-Finsler Carnot groups with strictly convex norms, we prove that all infinite geodesics are lines. It follows that for any other homogeneous distance, all geodesics are lines exactly when the induced norm on the horizontal space is strictly convex. As a further consequence, we show that all isometric embeddings between such homogeneous groups are affine. The core of the proof is an asymptotic study of the extremals given by the Pontryagin Maximum Principle.

Keywords

  1. Carnot groups
  2. isometries
  3. isometric embeddings
  4. geodesics
  5. sub-Riemannian geometry
  6. sub-Finsler geometry

MSC codes

  1. 30L05
  2. 53C17
  3. 49K21
  4. 22E25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Agrachev, D. Barilari, and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Stud. Adv. Math., Cambridge University Press, Cambridge, 2019, 762 pp.
2.
A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Control Theory and Optimization, II, Encyclopaedia of Mathematical Sciences 87, Springer-Verlag, Berlin, 2004, https://doi.org/10.1007/978-3-662-06404-7.
3.
A. A. Ardentov, E. Le Donne, and Y. L. Sachkov, Sub-Finsler geodesics on the Cartan group, Regul. Chaotic Dyn., 24 (2019), pp. 36--60, https://doi.org/10.1134/S1560354719010027.
4.
A. A. Ardentov and Y. L. Sachkov, Cut time in sub-Riemannian problem on Engel group, ESAIM Control Optim. Calc. Var., 21 (2015), pp. 958--988, https://doi.org/10.1051/cocv/2015027.
5.
Z. M. Balogh and A. Calogero, Infinite Geodesics of Sub-Finsler Distances in the Heisenberg Groups, preprint, https://arxiv.org/abs/1807.10369, 2018.
6.
Z. M. Balogh, K. Fässler, and H. Sobrino, Isometric embeddings into Heisenberg groups, Geom. Dedicata, 195 (2018), pp. 163--192, https://doi.org/10.1007/s10711-017-0282-5.
7.
D. Barilari, U. Boscain, E. Le Donne, and M. Sigalotti, Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions, J. Dyn. Control Syst., 23 (2017), pp. 547--575, https://doi.org/10.1007/s10883-016-9341-8.
8.
D. Barilari, Y. Chitour, F. Jean, D. Prandi, and M. Sigalotti, On the Regularity of Abnormal Minimizers for Rank 2 Sub-Riemannian Structures, preprint, https://arxiv.org/abs/1804.00971, 2018.
9.
A. Belotto da Silva, A. Figalli, A. Parusiński, and L. Rifford, Strong Sard Conjecture and Regularity of Singular Minimizing Geodesics for Analytic Sub-Riemannian Structures in Dimension 3, preprint, https://arxiv.org/abs/1810.03347, 2018.
10.
D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics 33, American Mathematical Society, Providence, RI, 2001, https://doi.org/10.1090/gsm/033.
11.
E. Hakavuori and E. Le Donne, Non-minimality of corners in sub-Riemannian geometry, Invent. Math., 206 (2016), pp. 693--704, https://doi.org/10.1007/s00222-016-0661-9.
12.
E. Hakavuori and E. Le Donne, Blowups and Blowdowns of Geodesics in Carnot Groups, preprint, https://arxiv.org/abs/1806.09375, 2018.
13.
I. Kishimoto, Geodesics and isometries of Carnot groups, J. Math. Kyoto Univ., 43 (2003), pp. 509--522, https://doi.org/10.1215/kjm/1250283693.
14.
V. Kivioja and E. Le Donne, Isometries of nilpotent metric groups, J. Éc. polytech. Math., 4 (2017), pp. 473--482, https://doi.org/10.5802/jep.48.
15.
E. Le Donne, A metric characterization of Carnot groups, Proc. Amer. Math. Soc., 143 (2015), pp. 845--849, https://doi.org/10.1090/S0002-9939-2014-12244-1.
16.
E. Le Donne and A. Ottazzi, Isometries of Carnot groups and sub-Finsler homogeneous manifolds, J. Geom. Anal., 26 (2016), pp. 330--345, https://doi.org/10.1007/s12220-014-9552-8.
17.
E. Le Donne and S. Rigot, Besicovitch covering property on graded groups and applications to measure differentiation, J. Reine Angew. Math., 750 (2019), pp. 241--297, https://doi.org/10.1515/crelle-2016-0051.
18.
R. Monti, A. Pigati, and D. Vittone, Existence of tangent lines to Carnot-Carathéodory geodesics, Calc. Var. Partial Differential Equations, 57 (2018), 75, 18 pp., https://doi.org/10.1007/s00526-018-1361-7.
19.
R. Monti, A. Pigati, and D. Vittone, On tangent cones to length minimizers in Carnot-Carathéodory spaces, SIAM J. Control Optim., 56 (2018), pp. 3351--3369, https://doi.org/10.1137/17M114056X.
20.
P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., 129 (1989), pp. 1--60, https://doi.org/10.2307/1971484.
21.
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series 28, Princeton University Press, Princeton, NJ, 1970.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 447 - 461
ISSN (online): 1095-7138

History

Submitted: 27 June 2019
Accepted: 18 November 2019
Published online: 12 February 2020

Keywords

  1. Carnot groups
  2. isometries
  3. isometric embeddings
  4. geodesics
  5. sub-Riemannian geometry
  6. sub-Finsler geometry

MSC codes

  1. 30L05
  2. 53C17
  3. 49K21
  4. 22E25

Authors

Affiliations

Funding Information

Academy of Finland https://doi.org/10.13039/501100002341 : 288501

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 713998

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.