Abstract

We present a new parareal algorithm based on a diagonalization technique proposed recently. The algorithm uses a single implicit Runge--Kutta method with the same small step-size for both the $\mathcal{F}$ and $\mathcal{G}$ propagators in parareal and would thus converge in one iteration when used directly like this, without, however, any speedup due to the sequential way parareal uses $\mathcal{G}$. We then approximate $\mathcal{G}$ with a head-tail coupled condition such that $\mathcal{G}$ can be parallelized using diagonalization in time. We show that with a suitable choice of the parameter in the head-tail condition, our new parareal algorithm converges very rapidly, both for parabolic and hyperbolic problems, even in the nonlinear case. We illustrate our new algorithm with numerical experiments.

Keywords

  1. parareal algorithm
  2. diagonalization technique
  3. parallel coarse propagator
  4. dissipative problems
  5. wave propagation problems
  6. convergence analysis

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Bini, G. Latouche, and B. Meini, Numerical Methods for Structured Markov Chains, Oxford University Press, New York, 2005.
2.
V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39 (2017), pp. S501--S527, https://doi.org/10.1137/16M1074096.
3.
F. Chen, J. S. Hesthaven, and X. Zhu, On the use of reduced basis methods to accelerate and stabilize the parareal method, in Reduced Order Methods for Modeling and Computational Reduction, A. Quarteroni and G. Rozza, eds., MS&A Model. Simul. Appl. 9, Springer, Berlin, 2014, pp. 187--214.
4.
X. H. Du, M. Sarkis, C. F. Schaerer, and D. B. Szyld, Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems, Electron. Trans. Numer. Anal., 40 (2013), pp. 36--57.
5.
X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A52--A78, https://doi.org/10.1137/110861002.
6.
A. Eghbal, A. G. Gerber, and E. Aubanel, Acceleration of unsteady hydrodynamic simulations using the parareal algorithm, J. Comput. Sci., 19 (2017), pp. 57--76.
7.
M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial differential equations, Comm. App. Math. Comput. Sci., 7 (2012), pp. 105--132.
8.
C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses, Internat. J. Numer. Methods Engrg., 67 (2006), pp. 697--724.
9.
R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635--C661, https://doi.org/10.1137/130944230.
10.
M. J. Gander, I. G. Graham, and E. A. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: What is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math., 131 (2015), pp. 567--614.
11.
M. J. Gander, F. Kwok, and H. Zhang, Multigrid interpretations of the parareal algorithm leading to an overlapping variant and MGRIT, Comput. Visual Sci., 19 (2018), pp. 59--74.
12.
M. J. Gander, L. Halpern, J. Rannou, and J. Ryan, A direct time parallel solver by diagonalization for the wave equation, SIAM J. Sci. Comput., 41 (2019), pp. A220--A245, https://doi.org/10.1137/17M1148347.
13.
M. J. Gander and L. Halpern, Time parallelization for nonlinear problems based on diagonalization, in Domain Decomposition Methods in Science And Engineering XXIII, Lect. Notes Comput. Sci. Eng. 116, Springer, Cham, 2017, pp. 163--170.
14.
M. J. Gander and S. Güttel, A nonlinear ParaExp algorithm, in Domain Decomposition Methods in Science and Engineering XXIV, Lect. Notes Comput. Sci. Eng. 125, Springer, Cham, 2018, pp. 261--270.
15.
M. J. Gander and S. Güttel, ParaExp: A parallel integrator for linear initial-value problems, SIAM J. Sci. Comput., 35 (2013), pp. C123--C142, https://doi.org/10.1137/110856137.
16.
M. J. Gander, Y.-L. Jiang, B. Song, and H. Zhang, Analysis of two parareal algorithms for time-periodic problems, SIAM J. Sci. Comput., 35 (2013), pp. A2393--A2415, https://doi.org/10.1137/130909172.
17.
M. J. Gander and M. Petcu, Analysis of a modified parareal algorithm for second-order ordinary differential equations, AIP Conf. Proc., 936 (2007), pp. 233--236.
18.
M. J. Gander and M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear problems, in Paris-Sud Working Group on Modelling and Scientific Computing 2007--2008, ESAIM Proc., 25, EDP Sci., Les Ulis, 2008, pp. 114--129.
19.
M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., 29 (2007), pp. 556--578, https://doi.org/10.1137/05064607X.
20.
M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition, T. Carraro, M. Geiger, S. Körkel, R. Rannacher, eds., Springer Verlag, Cham, 2015, pp. 69--114.
21.
M. J. Gander and S.-L. Wu, Convergence analysis of a periodic-like waveform relaxation method for initial-value problems via the diagonalization technique, Numer. Math., 143 (2019), pp. 489--527.
22.
T. Haut and B. Wingate, An asymptotic parallel-in-time method for highly oscillatory PDEs, SIAM J. Sci. Comput., 36 (2014), pp. A693--A713, https://doi.org/10.1137/130914577.
23.
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, New York, 1996.
24.
M. A. Inda and R. H. Bisseling, A simple and efficient parallel FFT algorithm using the BSP model, Parallel Comput., 27 (2001), pp. 1847--1878.
25.
F. Legoll, T. Lelièvre, and G. Samaey, A micro-macro parareal algorithm: Application to singularly perturbed ordinary differential equations, SIAM J. Sci. Comput., 35 (2013), pp. A1951--A1986, https://doi.org/10.1137/120872681.
26.
J.-L. Lions, Y. Maday, and G. Turinici, A “parareal” in time discretization of PDE's, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661--668.
27.
A. Kreienbuehl, A. Naegel, D. Ruprecht, R. Speck, G. Wittum, and R. Krause, Numerical simulation of skin transport using parareal, Comput. Visual Sci., 17 (2015), pp. 99--108.
28.
T. P. Mathew, M. Sarkis, and C. E. Schaerer, Analysis of block parareal preconditioners for parabolic optimal control problems, SIAM J. Sci. Comput., 32 (2010), pp. 1180--1200, https://doi.org/10.1137/080717481.
29.
Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space-time solvers, C. R. Math. Acad. Sci. Paris, 346 (2008), pp. 113--118.
30.
E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1012--A1033, https://doi.org/10.1137/16M1062016.
31.
A. S. Nielsen, G. Brunner, and J. S. Hesthaven, Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations, J. Comput. Phys., 371 (2018), pp. 483--505.
32.
M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations, SIAM J. Sci. Comput., 41 (2019), pp. C28--C51, https://doi.org/10.1137/18M1172466.
33.
J. M. Reynolds-Barredo, D. E. Newman, R. Sanchez, D. Samaddar, L. A. Berry, and W. R. Elwasif, Mechanisms for the convergence of time-parallelized, parareal turbulent plasma simulations, J. Comput. Phys., 231 (2012), pp. 7851--7867.
34.
J. M. Reynolds-Barredo, D. E. Newman, and R. Sanchez, An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm, J. Comput. Phys., 255 (2013), pp. 293--315.
35.
D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection system, Comput. Fluids, 59 (2012), pp. 72--83.
36.
D. Ruprecht, Wave propagation characteristics of Parareal, Comput. Visual Sci., 19 (2018), pp. 1--17.
37.
J. Steiner, D. Ruprecht, R. Speck, and R. Krause, Convergence of parareal for the Navier-Stokes equations depending on the Reynolds number, in Numerical Mathematics and Advanced Applications---ENUMATH 2013, Lect. Notes Comput. Sci. Eng. 103, Springer, Cham, 2015, pp. 195--202.
38.
W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84 (2015), pp. 1703--1727.
39.
S.-L. Wu and T. Zhou, Convergence analysis for three parareal solvers, SIAM J. Sci. Comput., 37 (2015), pp. A970--A992, https://doi.org/10.1137/140970756.
40.
S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput., 40 (2018), pp. A1446--A1472, https://doi.org/10.1137/17M1141102.
41.
S.-L. Wu, H. Zhang, and T. Zhou, Solving time-‐periodic fractional diffusion equations via diagonalization technique and multigrid, Numer. Linear Algebra Appl., 25 (2018), e2178, https://doi.org/10.1002/nla.2178.
42.
S.-L. Wu and T. Zhou, Acceleration of the two-level MGRIT algorithm via the diagonalization technique, SIAM J. Sci. Comput., 41 (2019), pp. A3421--A3448, https://doi.org/10.1137/18M1207697.
43.
Q. Xu, J. S. Hesthaven, and F. Chen, A parareal method for time-fractional differential equations, J. Comput. Phys., 293 (2015), pp. 173--183.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2981 - 3009
ISSN (online): 1095-7170

History

Submitted: 1 July 2019
Accepted: 11 August 2020
Published online: 27 October 2020

Keywords

  1. parareal algorithm
  2. diagonalization technique
  3. parallel coarse propagator
  4. dissipative problems
  5. wave propagation problems
  6. convergence analysis

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Authors

Affiliations

Funding Information

National Science Foundation of Sichuan Province : 2018JY0469
Science Challenge Project https://doi.org/10.13039/501100013287 : TZ2016002
National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 11771313

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media