Abstract

We develop algebraic methods for computations with tensor data. We give three applications: extracting features that are invariant under the orthogonal symmetries in each of the modes, approximation of the tensor spectral norm, and amplification of low rank tensor structure. We introduce colored Brauer diagrams, which are used for algebraic computations and in analyzing their computational complexity. We present numerical experiments whose results show that the performance of the alternating least squares algorithm for rank 1 approximations for tensors can be improved using tensor amplification.

Keywords

  1. tensors
  2. spectral norm
  3. Brauer diagrams

MSC codes

  1. 15A72
  2. 15A69
  3. 62-07
  4. 22E45
  5. 20G05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
B. W. Bader, T. G. Kolda, et al., MATLAB Tensor Toolbox, Version 2.6, https://www.tensortoolbox.org, 2015.
2.
R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math., 38 (1937), pp. 857--872.
3.
D. Callan, A Combinatorial Survey of Identities for the Double Factorial, preprint, arXiv:0906.1317, 2009.
4.
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), https://doi.org/10.1007/s10208-009-9045-5.
5.
E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans. Inform. Theory, 56 (2010), https://doi.org/10.1109/TIT.2010.2044061.
6.
H. Derksen, On the nuclear norm and the singular value decomposition of tensor, Found. Comput. Math., 16 (2016), pp. 779--811.
7.
S. Friedland and L.-H. Lim, Nuclear norm of higher-order tensors, Math. Comp., 87 (2018), pp. 1255--1281.
8.
R. Goodman and N. R. Wallach, Representations and Invariants of Classical Groups, Cambridge University Press, Cambridge, 1998.
9.
A. Grothendieck, Produits tensoriels topologiques et espaces nucléares, Mem. Amer. Math. Soc., (1955).
10.
J. H\aastad, Tensor rank is NP-complete, J. Algorithms, 11 (1990), pp. 644--654.
11.
J. H\aastad, Tensor Rank Is NP-Complete, Automata, Languages, and Programming (Stresa, 1989), Lecture Notes in Comput. Sci. 372, Springer, Berlin, 1989, pp. 451--460.
12.
C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45.
13.
F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6 (1927), pp. 164--189.
14.
F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor, J. Math. Phys., 7 (1928), pp. 39--79.
15.
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455--500.
16.
X. Kong, A concise proof to the spectral and nuclear norm bounds through tensor partitions, Open Math., 17 (2019), pp. 365--373.
17.
J. M. Landsberg, Tensors: Geometry and Applications, Grad. Stud. Math. 128, American Mathematical Society, Providence, RI, 2012.
18.
S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer-Verlag, New York, 2002.
19.
L. De Lathauwer and B. De Moor, A Multilinear Singular Value Decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253--1278, https://doi.org/10.1137/S0895479896305696.
20.
Z. Li, The spectral norm and the nuclear norm of a tensor based on tensor partitions, Matrix Anal. Appl., 37 (2016), pp. 1440--1452.
21.
Z. Li, Y. Nakatsukasa, et al., On orthogonal tensors and best rank-one approximation ratio, SIAM J. Matrix Anal. Appl., 39 (2017), https://doi.org/10.1137/17M1144349.
22.
OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A001147, 2020.
23.
OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A002831, 2019.
24.
V. L. Popov and E. B. Vinberg, Invariant Theory, Encyclopaedia Math. Sci. 55, A. Parshin and I. R. Shafarevich, eds., Springer-Verlag, Berlin, 1994.
25.
L. Qi and S. Hu, Spectral Norm and Nuclear Norm of a Third Order Tensor, preprint, arXiv:1909.01529, 2019.
26.
A. Ramlatchan, M. Yang, et al., A survey of matrix completion methods for recommendation systems, Big Data Mining Analytics, 1 (2018), pp. 308--323.
27.
R. Schatten, A Theory of Cross-Spaces, Princeton University Press, Princeton, NJ, 1950.
28.
A. P. Da Silva, P. Comon, et al., A finite algorithm to compute rank-$1$ tensor approximations, IEEE Signal Process. Lett., 23 (2016), pp. 959--963.
29.
V. De Silva and L.-H. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084--1127.
30.
L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966), pp. 279--311, https://doi.org/10.1007/BF02289464.
31.
H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, NJ, 1939.
32.
L. K. Williams, Invariant Polynomials on Tensors under the Action of a Product of Orthogonal Groups, Ph.D. Thesis, University of Wisconsin, Milwaukee, 2013.
33.
M. Yuan and C. Zhang, On Tensor Completion via Nuclear Norm Minimization, Found. Comput. Math., 16 (2016), pp. 1031--1068, https://doi.org/10.1007/s10208-015-9269-5.
34.
T. Zhang and G. H. Golub, Rank-One Approximation to High Order Tensors, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 534--550, https://doi.org/10.1137/S0895479899352045.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 1 - 27
ISSN (online): 2470-6566

History

Submitted: 5 July 2019
Accepted: 29 September 2020
Published online: 4 January 2021

Keywords

  1. tensors
  2. spectral norm
  3. Brauer diagrams

MSC codes

  1. 15A72
  2. 15A69
  3. 62-07
  4. 22E45
  5. 20G05

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : 1837985
U.S. Department of Defense https://doi.org/10.13039/100000005 : BA150235
University of Michigan https://doi.org/10.13039/100007270 : U063159

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media