Abstract

The field of network synchronization has seen tremendous growth following the introduction of the master stability function (MSF) formalism, which enables the efficient stability analysis of synchronization in large oscillator networks. However, to make further progress we must overcome the limitations of this celebrated formalism, which focuses on global synchronization and requires both the oscillators and their interaction functions to be identical, while many systems of interest are inherently heterogeneous and exhibit complex synchronization patterns. Here, we establish a generalization of the MSF formalism that can characterize the stability of any cluster synchronization pattern, even when the oscillators and/or their interaction functions are nonidentical. The new framework is based on finding the finest simultaneous block diagonalization of matrices in the variational equation and does not rely on information about network symmetry. This leads to an algorithm that is error-tolerant and orders of magnitude faster than existing symmetry-based algorithms. As an application, we rigorously characterize the stability of chimera states in networks with multiple types of interactions.

Keywords

  1. dynamical systems
  2. synchronization
  3. symmetry
  4. matrix $*$-algebra
  5. simultaneous block diagonalization
  6. chimera states

MSC codes

  1. 34C15
  2. 35B36
  3. 05C25
  4. 05C82
  5. 05C50

Formats available

You can view the full content in the following formats:

References

1.
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101 (2008), art. 084103.
2.
D. M. Abrams, L. M. Pecora, and A. E. Motter, Introduction to focus issue: Patterns of network synchronization, Chaos, 26 (2016), art. 094601.
3.
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett., 93 (2004), art. 174102.
4.
M. Aguiar, P. Ashwin, A. Dias, and M. Field, Dynamics of coupled cell networks: Synchrony, heteroclinic cycles and inflation, J. Nonlinear Sci., 21 (2011), pp. 271--323.
5.
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), pp. 93--153.
6.
P. Ashwin and O. Burylko, Weak chimeras in minimal networks of coupled phase oscillators, Chaos, 25 (2015), art. 013106.
7.
I. Belykh, E. de Lange, and M. Hasler, Synchronization of bursting neurons: What matters in the network topology, Phys. Rev. Lett., 94 (2005), art. 188101.
8.
V. N. Belykh, I. V. Belykh, and E. Mosekilde, Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E, 63 (2001), art. 036216.
9.
V. N. Belykh, G. V. Osipov, S. Petrov, J. A. Suykens, and J. Vandewalle, Cluster synchronization in oscillatory networks, Chaos, 18 (2008), art. 037106.
10.
C. Bick, M. Sebek, and I. Z. Kiss, Robust weak chimeras in oscillator networks with delayed linear and quadratic interactions, Phys. Rev. Lett., 119 (2017), art. 168301.
11.
K. A. Blaha, K. Huang, F. Della Rossa, L. Pecora, M. Hossein-Zadeh, and F. Sorrentino, Cluster synchronization in multilayer networks: A fully analog experiment with LC oscillators with physically dissimilar coupling, Phys. Rev. Lett., 122 (2019), art. 014101.
12.
S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), pp. 1--122.
13.
S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), pp. 1--101.
14.
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), pp. 175--308.
15.
Y. Cao, W. Yu, W. Ren, and G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Ind. Informat., 9 (2013), pp. 427--438.
16.
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett., 119 (2017), art. 084101.
17.
T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E, 86 (2012), art. 016202.
18.
C. I. del Genio, J. Gómez-Garden͂es, I. Bonamassa, and S. Boccaletti, Synchronization in networks with multiple interaction layers, Sci. Adv., 2 (2016), art. e1601679.
19.
M. Feki, An adaptive chaos synchronization scheme applied to secure communication, Chaos, Solitons & Fractals, 18 (2003), pp. 141--148.
20.
S. Ghosh, A. Kumar, A. Zakharova, and S. Jalan, Birth and death of chimera: Interplay of delay and multiplexing, EPL, 115 (2016), art. 60005.
21.
M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: The groupoid formalism, Bull. Amer. Math. Soc., 43 (2006), pp. 305--364.
22.
M. Golubitsky, I. Stewart, and A. Török, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 78--100, https://doi.org/10.1137/040612634.
23.
A. Hagerstorm, Network Symmetries and Synchronization, https://sourceforge.net/projects/networksym/.
24.
A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8 (2012), pp. 658--661.
25.
J. D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos, 26 (2016), art. 094801.
26.
J. D. Hart, D. C. Schmadel, T. E. Murphy, and R. Roy, Experiments with arbitrary networks in time-multiplexed delay systems, Chaos, 27 (2017), art. 121103.
27.
D. Irving and F. Sorrentino, Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices, Phys. Rev. E, 86 (2012), art. 056102.
28.
H. Kamei and P. J. A. Cock, Computation of balanced equivalence relations and their lattice for a coupled cell network, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 352--382, https://doi.org/10.1137/100819795.
29.
K. Kaneko, Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements, Phys. D, 41 (1990), pp. 137--172.
30.
M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, Multilayer networks, J. Complex Netw., 2 (2014), pp. 203--271.
31.
Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5 (2002), pp. 380--385.
32.
T.-Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math. 131, Springer Science & Business Media, 2013.
33.
Z. Li, Z. Duan, G. Chen, and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Trans. Circuits Syst. I Reg. Papers, 57 (2010), pp. 213--224.
34.
T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix $*$-algebras with general irreducible components, Jpn. J. Ind. Appl. Math, 27 (2010), pp. 263--293.
35.
T. Maehara and K. Murota, Algorithm for error-controlled simultaneous block-diagonalization of matrices, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 605--620, https://doi.org/10.1137/090779966.
36.
S. Majhi, M. Perc, and D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos, 27 (2017), art. 073109.
37.
E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 10563--10567.
38.
A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys., 9 (2013), pp. 191--197.
39.
K. Murota, Y. Kanno, M. Kojima, and S. Kojima, A numerical algorithm for block-diagonal decomposition of matrix $*$-algebras with application to semidefinite programming, Jpn. J. Ind. Appl. Math, 27 (2010), pp. 125--160.
40.
M. E. J. Newman, The structure and function of complex networks, SIAM Rev., 45 (2003), pp. 167--256, https://doi.org/10.1137/S003614450342480.
41.
V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, and V. Latora, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110 (2013), art. 174102.
42.
R. Olfati-Saber, A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95 (2007), pp. 215--233.
43.
E. Omel'chenko, Y. L. Maistrenko, and P. A. Tass, Chimera states: The natural link between coherence and incoherence, Phys. Rev. Lett., 100 (2008), art. 044105.
44.
O. E. Omel'chenko, The mathematics behind chimera states, Nonlinearity, 31 (2018), pp. R121--R164.
45.
G. Orosz, Decomposition of nonlinear delayed networks around cluster states with applications to neurodynamics, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1353--1386, https://doi.org/10.1137/130915637.
46.
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), art. 037113.
47.
M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28 (2015), pp. R67--R87.
48.
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), pp. 821--824.
49.
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80 (1998), pp. 2109--2112.
50.
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun., 5 (2014), art. 4079.
51.
M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), pp. 1804--1807.
52.
D. P. Rosin, D. Rontani, D. J. Gauthier, and E. Schöll, Control of synchronization patterns in neural-like boolean networks, Phys. Rev. Lett., 110 (2013), art. 104102.
53.
M. T. Schaub, N. O'Clery, Y. N. Billeh, J.-C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster synchronization in networks of oscillators, Chaos, 26 (2016), art. 094821.
54.
L. Schmidt and K. Krischer, Clustering as a prerequisite for chimera states in globally coupled systems, Phys. Rev. Lett., 114 (2015), art. 034101.
55.
N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117 (2016), art. 014102.
56.
G. C. Sethia and A. Sen, Chimera states: The existence criteria revisited, Phys. Rev. Lett., 112 (2014), art. 144101.
57.
R. Sevilla-Escoboza, I. Sendin͂a-Nadal, I. Leyva, R. Gutiérrez, J. Buldú, and S. Boccaletti, Inter-layer synchronization in multiplex networks of identical layers, Chaos, 26 (2016), art. 065304.
58.
A. B. Siddique, L. Pecora, J. D. Hart, and F. Sorrentino, Symmetry- and input-cluster synchronization in networks, Phys. Rev. E, 97 (2018), art. 042217.
59.
F. Sorrentino, Synchronization of hypernetworks of coupled dynamical systems, New J. Phys., 14 (2012), art. 033035.
60.
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Complete characterization of the stability of cluster synchronization in complex dynamical networks, Sci. Adv., 2 (2016), art. e1501737.
61.
W. Stein et al., Sage: Open Source Mathematical Software, 2008, www.sagemath.org.
62.
I. Stewart, M. Golubitsky, and M. Pivato, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 609--646, https://doi.org/10.1137/S1111111103419896.
63.
S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), pp. 1--20.
64.
L. Tang, X. Wu, J. Lü, J.-a. Lu, and R. M. D'Souza, Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators, Phys. Rev. E, 99 (2019), art. 012304.
65.
M. Timme, F. Wolf, and T. Geisel, Prevalence of unstable attractors in networks of pulse-coupled oscillators, Phys. Rev. Lett., 89 (2002), art. 154105.
66.
M. Tinkham, Group Theory and Quantum Mechanics, Courier Corporation, 2003.
67.
M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8 (2012), pp. 662--665.
68.
J. F. Totz, J. Rode, M. R. Tinsley, K. Showalter, and H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys., 14 (2018), pp. 282--285.
69.
K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett., 76 (1996), pp. 404--407.
70.
C. R. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators, Phys. Rev. Lett., 110 (2013), art. 064104.
71.
A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett., 112 (2014), art. 144103.
72.
Y. Zhang and A. E. Motter, Identical synchronization of nonidentical oscillators: When only birds of different feathers flock together, Nonlinearity, 31 (2018), pp. R1--R23.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 817 - 836
ISSN (online): 1095-7200

History

Submitted: 9 July 2019
Accepted: 3 February 2020
Published online: 3 November 2020

Keywords

  1. dynamical systems
  2. synchronization
  3. symmetry
  4. matrix $*$-algebra
  5. simultaneous block diagonalization
  6. chimera states

MSC codes

  1. 34C15
  2. 35B36
  3. 05C25
  4. 05C82
  5. 05C50

Authors

Affiliations

Funding Information

Army Research Office https://doi.org/10.13039/100000183 : W911NF-19-1-0383

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media