In this work, we consider conforming finite element discretizations of arbitrary polynomial degree ${p \ge 1}$ of the Poisson problem. We propose a multilevel a posteriori estimator of the algebraic error. We prove that this estimator is reliable and efficient (represents a two-sided bound of the error), with a constant independent of the degree $p$. We next design a multilevel iterative algebraic solver from our estimator and show that this solver contracts the algebraic error on each iteration by a factor bounded independently of $p$. Actually, we show that these two results are equivalent. The $p$-robustness results rely on the work of Schöberl et al. [IMA J. Numer. Anal., 28 (2008), pp. 1--24] for one given mesh. We combine this with the design of an algebraic residual lifting constructed over a hierarchy of nested unstructured, possibly highly graded, simplicial meshes. The lifting includes a global coarse-level solve with the lowest polynomial degree one together with local contributions from the subsequent mesh levels. These contributions, of the highest polynomial degree $p$ on the finest mesh, are given as solutions of mutually independent local Dirichlet problems posed over overlapping patches of elements around vertices. The construction of this lifting can be seen as one geometric V-cycle multigrid step with zero pre- and one postsmoothing by (damped) additive Schwarz (block Jacobi). One particular feature of our approach is the optimal choice of the step-size generated from the algebraic residual lifting. Numerical tests are presented to illustrate the theoretical findings.


  1. finite element method
  2. stable decomposition
  3. multilevel method
  4. Schwarz method
  5. a posteriori estimate
  6. $p$-robustness

MSC codes

  1. 65N55
  2. 65N30
  3. 65F10
  4. 65N15
  5. 65N22

Get full access to this article

View all available purchase options and get full access to this article.


M. Ainsworth, A preconditioner based on domain decomposition for $h$-$p$ finite-element approximation on quasi-uniform meshes, SIAM J. Numer. Anal., 33 (1996), pp. 1358--1376, https://doi.org/10.1137/S0036142993258221.
P. F. Antonietti and G. Pennesi, $V$-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes, J. Sci. Comput., 78 (2019), pp. 625--652, https://doi.org/10.1007/s10915-018-0783-x.
P. F. Antonietti, M. Sarti, M. Verani, and L. T. Zikatanov, A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems, J. Sci. Comput., 70 (2017), pp. 608--630, https://doi.org/10.1007/s10915-016-0259-9.
M. Arioli, E. H. Georgoulis, and D. Loghin, Stopping criteria for adaptive finite element solvers, SIAM J. Sci. Comput., 35 (2013), pp. A1537--A1559, https://doi.org/10.1137/120867421.
I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta, Efficient preconditioning for the $p$-version finite element method in two dimensions, SIAM J. Numer. Anal., 28 (1991), pp. 624--661, https://doi.org/10.1137/0728034.
R. E. Bank, T. F. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math., 52 (1988), pp. 427--458, https://doi.org/10.1007/BF01462238.
P. Bastian, M. Blatt, and R. Scheichl, Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems, Numer. Linear Algebra Appl., 19 (2012), pp. 367--388, https://doi.org/10.1002/nla.1816.
R. Becker, C. Johnson, and R. Rannacher, Adaptive error control for multigrid finite element methods, Computing, 55 (1995), pp. 271--288, https://doi.org/10.1007/BF02238483.
F. A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems, Numer. Math., 75 (1996), pp. 135--152, https://doi.org/10.1007/s002110050234.
L. Botti, A. Colombo, and F. Bassi, $h$-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems, J. Comput. Phys., 347 (2017), pp. 382--415, https://doi.org/10.1016/j.jcp.2017.07.002.
J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp., 47 (1986), pp. 103--134, https://doi.org/10.2307/2008084.
J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioners, in Numerical Analysis 1989 (Dundee, 1989), Pitman Res. Notes Math. Ser. 228, Longman Sci. Tech., Harlow, 1990, pp. 23--39.
A. Brandt, S. McCormick, and J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and Its Applications (Loughborough, 1983), Cambridge University Press, Cambridge, UK, 1985, pp. 257--284.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0.
X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792--797, https://doi.org/10.1137/S106482759732678X.
C. Canuto and A. Quarteroni, Preconditioned minimal residual methods for Chebyshev spectral calculations, J. Comput. Phys., 60 (1985), pp. 315--337, https://doi.org/10.1016/0021-9991(85)90010-5.
L. Chen, R. H. Nochetto, and J. Xu, Optimal multilevel methods for graded bisection grids, Numer. Math., 120 (2012), pp. 1--34, https://doi.org/10.1007/s00211-011-0401-4.
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978.
E. Efstathiou and M. J. Gander, Why restricted additive Schwarz converges faster than additive Schwarz, BIT, 43 (2003), pp. 945--959, https://doi.org/10.1023/B:BITN.0000014563.33622.1d.
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.
S. Foresti, G. Brussino, S. Hassanzadeh, and V. Sonnad, Multilevel solution method for the $p$-version of finite elements, Comput. Phys. Commun., 53 (1989), pp. 349--355, https://doi.org/10.1016/0010-4655(89)90172-0.
A. Gholami, D. Malhotra, H. Sundar, and G. Biros, FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube, SIAM J. Sci. Comput., 38 (2016), pp. C280--C306, https://doi.org/10.1137/15M1010798.
M. Griebel, P. Oswald, and M. A. Schweitzer, A particle-partition of unity method. VI. A $p$-robust multilevel solver, in Meshfree Methods for Partial Differential Equations II, Lect. Notes Comput. Sci. Eng. 43, Springer, Berlin, 2005, pp. 71--92, https://doi.org/10.1007/3-540-27099-X_5.
W. Hackbusch, Multi-grid Methods and Applications, Springer Ser. Comput. Math. 4, Springer, Berlin, 2003.
W. Heinrichs, Line relaxation for spectral multigrid methods, J. Comput. Phys., 77 (1988), pp. 166--182, https://doi.org/10.1016/0021-9991(88)90161-1.
R. Hiptmair, H. Wu, and W. Zheng, Uniform convergence of adaptive multigrid methods for elliptic problems and Maxwell's equations, Numer. Math. Theory Methods Appl., 5 (2012), pp. 297--332, https://doi.org/10.4208/nmtma.2012.m1128.
B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for $H^1$- and $H^{\rm curl}$-conforming high order finite element methods, SIAM J. Sci. Comput., 33 (2011), pp. 2095--2114, https://doi.org/10.1137/090778523.
P. Jiránek, Z. Strakoš, and M. Vohralík, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), pp. 1567--1590, https://doi.org/10.1137/08073706X.
G. Kanschat, Robust smoothers for high-order discontinuous Galerkin discretizations of advection-diffusion problems, J. Comput. Appl. Math., 218 (2008), pp. 53--60, https://doi.org/10.1016/j.cam.2007.04.032.
M. Kronbichler and W. A. Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput., 40 (2018), pp. A3423--A3448, https://doi.org/10.1137/16M110455X.
S. Loisel, R. Nabben, and D. B. Szyld, On hybrid multigrid-Schwarz algorithms, J. Sci. Comput., 36 (2008), pp. 165--175, https://doi.org/10.1007/s10915-007-9183-3.
J. P. Lucero Lorca and G. Kanschat, Multilevel Schwarz Preconditioners for Singularly Perturbed Symmetric Reaction-diffusion Systems, preprint, https://arxiv.org/abs/1811.03839v1, 2018.
J. Mandel, Two-level domain decomposition preconditioning for the $p$-version finite element method in three dimensions, Internat. J. Numer. Methods Engrg., 29 (1990), pp. 1095--1108, https://doi.org/10.1002/nme.1620290513.
D. Meidner, R. Rannacher, and J. Vihharev, Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math., 17 (2009), pp. 143--172, https://doi.org/10.1515/JNUM.2009.009.
J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res. Financial Eng., Springer, New York, 2006.
Y. Notay and A. Napov, A massively parallel solver for discrete Poisson-like problems, J. Comput. Phys., 281 (2015), pp. 237--250, https://doi.org/10.1016/j.jcp.2014.10.043.
P. Oswald, Multilevel Finite Element Approximation: Theory and Applications, Teubner Skr. Numer., B. G. Teubner, Stuttgart, 1994, https://doi.org/10.1007/978-3-322-91215-2.
J. Papež, U. Rüde, M. Vohralík, and B. Wohlmuth, Sharp algebraic and total a posteriori error bounds for $h$ and $p$ finite elements via a multilevel approach: Recovering mass balance in any situation, Comput. Methods Appl. Mech. Engrg., 371 (2020), 113243, https://doi.org/10.1016/j.cma.2020.113243.
J. Papež, Z. Strakoš, and M. Vohralík, Estimating and localizing the algebraic and total numerical errors using flux reconstructions, Numer. Math., 138 (2018), pp. 681--721, https://doi.org/10.1007/s00211-017-0915-5.
J. Papež and M. Vohralík, Inexpensive Guaranteed and Efficient Upper Bounds on the Algebraic Error in Finite Element Discretizations, HAL preprint 02422851, https://hal.inria.fr/hal-02422851, 2019.
L. F. Pavarino, Additive Schwarz methods for the $p$-version finite element method, Numer. Math., 66 (1994), pp. 493--515, https://doi.org/10.1007/BF01385709.
A. Quarteroni and G. Sacchi Landriani, Domain decomposition preconditioners for the spectral collocation method, J. Sci. Comput., 3 (1988), pp. 45--76, https://doi.org/10.1007/BF01066482.
J. Schöberl, C++11 Implementation of Finite Elements in NGsolve, Tech. report, ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014, https://ngsolve.org.
J. Schöberl, J. M. Melenk, C. Pechstein, and S. Zaglmayr, Additive Schwarz preconditioning for $p$-version triangular and tetrahedral finite elements, IMA J. Numer. Anal., 28 (2008), pp. 1--24, https://doi.org/10.1093/imanum/drl046.
E. G. Sewell, Automatic Generation of Triangulations for Piecewise Polynomial Approximation, Thesis (Ph.D.), Purdue University, West Lafayette, IN, 1972.
H. Sundar, G. Stadler, and G. Biros, Comparison of multigrid algorithms for high-order continuous finite element discretizations, Numer. Linear Algebra Appl., 22 (2015), pp. 664--680, https://doi.org/10.1002/nla.1979.
T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Engrg. Math., 56 (2006), pp. 247--262, https://doi.org/10.1007/s10665-006-9086-6.
H. Wu and Z. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems, Sci. China Ser. A, 49 (2006), pp. 1405--1429, https://doi.org/10.1007/s11425-006-2005-5.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581--613, https://doi.org/10.1137/1034116.
J. Xu, L. Chen, and R. H. Nochetto, Optimal multilevel methods for $H({grad})$, $H({curl})$, and $H({div})$ systems on graded and unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin, 2009, pp. 599--659, https://doi.org/10.1007/978-3-642-03413-8_14.
X. Zhang, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521--539, https://doi.org/10.1007/BF01385873.

Information & Authors


Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2856 - 2884
ISSN (online): 1095-7170


Submitted: 18 July 2019
Accepted: 26 June 2020
Published online: 14 October 2020


  1. finite element method
  2. stable decomposition
  3. multilevel method
  4. Schwarz method
  5. a posteriori estimate
  6. $p$-robustness

MSC codes

  1. 65N55
  2. 65N30
  3. 65F10
  4. 65N15
  5. 65N22



Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 647134 GATIPOR
H2020 European Research Council https://doi.org/10.13039/100010663 : 671633 NLAFET

Metrics & Citations



If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options


View PDF







Copy the content Link

Share with email

Email a colleague

Share on social media