Abstract

The Stokes equation posed on surfaces is important in some physical models, but its numerical solution poses several challenges not encountered in the corresponding Euclidean setting. These include the fact that the velocity vector should be tangent to the given surface and the possible presence of degenerate modes (Killing fields) in the solution. We analyze a surface finite element method which provides solutions to these challenges. We consider an interior penalty method based on the well-known Brezzi--Douglas--Marini $H(div)$-conforming finite element space. The resulting spaces are tangential to the surface but require penalization of jumps across element interfaces in order to weakly maintain $H^1$ conformity of the velocity field. In addition our method exactly satisfies the incompressibility constraint in the surface Stokes problem. Second, we give a method which robustly filters Killing fields out of the solution. This problem is complicated by the fact that the dimension of the space of Killing fields may change with small perturbations of the surface. We first approximate the Killing fields via a Stokes eigenvalue problem and then give a method which is asymptotically guaranteed to correctly exclude them from the solution. The properties of our method are rigorously established via an error analysis and illustrated via numerical experiments.

Keywords

  1. surface Stokes equation
  2. finite element method
  3. surface Stokes eigenvalue problem
  4. Killing fields

MSC codes

  1. 65N12
  2. 65N15
  3. 65N25
  4. 65N30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. F. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stinner, and M. Verani, High order discontinuous Galerkin methods for elliptic problems on surfaces, SIAM J. Numer. Anal., 53 (2015), pp. 1145--1171.
2.
D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47 (2010), pp. 281--354.
3.
J. W. Barrett, H. Garcke, and R. Nürnberg, A stable numerical method for the dynamics of fluidic membranes, Numer. Math., 134 (2016), pp. 783--822.
4.
J. W. Barrett, H. Garcke, and R. Nürnberg, Finite element approximation for the dynamics of asymmetric fluidic biomembranes, Math. Comp., 86 (2017), pp. 1037--1069.
5.
D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1--120.
6.
A. Bonito, A. Demlow, and R. H. Nochetto, Finite element methods for the Laplace-Beltrami operator, in Handbook of Numerical Analysis, Vol. 21, Geometric Partial Differential Equations - Part I, A. Bonito and R. H. Nochetto, eds., Elsevier/North-Holland, Amsterdam, 2020, pp. 1--103, https://doi.org/10.1016/bs.hna.2019.06.002.
7.
A. Bonito, A. Demlow, and J. Owen, A priori error estimates for finite element approximations to eigenvalues and eigenfunctions of the Laplace-Beltrami operator, SIAM J. Numer. Anal., 56 (2018), pp. 2963--2988.
8.
P. Brandner and A. Reusken, Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation, IPGM Report 493, RWTH Aachen, 2019.
9.
S. C. Brenner, Korn's inequalities for piecewise $H^1$ vector fields, Math. Comp., 73 (2004), pp. 1067--1087.
10.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer-Verlag, New York, 1991.
11.
L. Chen, iFEM: An Innovative Finite Element Method Package in MATLAB, Tech. report, University of California--Irvine, 2009.
12.
B. Cockburn and A. Demlow, Hybridizable discontinuous Galerkin and mixed finite element methods for elliptic problems on surfaces, Math. Comp., 85 (2016), pp. 2609--2638.
13.
B. Cockburn, G. Kanschat, and D. Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp., 74 (2005), pp. 1067--1095.
14.
B. Cockburn, G. Kanschat, and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations, J. Sci. Comput., 31 (2007), pp. 61--73.
15.
A. Dedner, P. Madhavan, and B. Stinner, Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer. Anal., 33 (2013), pp. 952--973.
16.
A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal., 45 (2007), pp. 421--442.
17.
G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, Berlin, 1988, pp. 142--155.
18.
T.-P. Fries, Higher-order surface FEM for incompressible Navier-Stokes flows on manifolds, Internat. J. Numer. Methods Fluids, 88 (2018), pp. 55--78.
19.
J. Gedicke and A. Khan, Divergence-conforming Discontinuous Galerkin Finite Elements for Stokes Eigenvalue Problems, arXiv:1805.08981, 2018.
20.
S. Gross, T. Jankuhn, M. A. Olshanskii, and A. Reusken, A trace finite element method for vector-Laplacians on surfaces, SIAM J. Numer. Anal., 56 (2018), pp. 2406--2429.
21.
T. Jankuhn, M. A. Olshanskii, and A. Reusken, Incompressible fluid problems on embedded surfaces: Modeling and variational formulations, Interfaces Free Bound., 20 (2018), pp. 353--377.
22.
T. Jankuhn, M. A. Olshanskii, A. Reusken, and A. Zhiliakov, Error Analysis of Higher Order Trace Finite Element Methods for the Surface Stokes Equations, arXiv:2003.06972, 2020.
23.
T. Jankuhn and A. Reusken, Trace finite element methods for surface vector-Laplace equations, IMA J. Numer. Anal., to appear.
24.
P. Lederer, C. Lehrenfeld, and J. Schöberl, Divergence-free tangential finite element methods for incompressible flows on surfaces, Internat. J. Numer. Methods Engrg., 121 (2020), pp. 2503--2533.
25.
I. Nitschke, S. Reuther, and A. Voigt, Discrete exterior calculus (DEC) for the surface Navier-Stokes equation, in Transport Processes at Fluidic Interfaces, Adv. Math. Fluid Mech., Birkhäuser/Springer, Cham, 2017, pp. 177--197.
26.
M. A. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin, A finite element method for the surface Stokes problem, SIAM J. Sci. Comput., 40 (2018), pp. A2492--A2518.
27.
M. A. Olshanskii, A. Reusken, and A. Zhiliakov, Inf-sup stability of the trace ${P}_2$-$P_1$ Taylor-Hood elements for surface PDEs, Math. Comp., to appear.
28.
M. A. Olshanskii and V. Yushutin, A penalty finite element method for a fluid system posed on embedded surface, J. Math. Fluid Mech., 21 (2019), 14.
29.
A. Reusken, Stream Function Formulation of Surface Stokes Equations, Tech. report 478, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 2018.
30.
S. Reuther and A. Voigt, Solving the Incompressible Surface Navier-Stokes Equation by Surface Finite Elements, arXiv:1709.02803, 2017.
31.
M. Ben-Chen, A. Butscher, J. Solomon, and L. Guibas, On discrete Killing vector fields and patterns on surfaces, Computer Graphics Forum, 29 (2010), pp. 1701--1711.
32.
P. Steinmann, On boundary potential energies in deformational and configurational mechanics, J. Mech. Phys. Solids, 56 (2008), pp. 772--800.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2764 - 2798
ISSN (online): 1095-7170

History

Submitted: 30 August 2019
Accepted: 29 July 2020
Published online: 30 September 2020

Keywords

  1. surface Stokes equation
  2. finite element method
  3. surface Stokes eigenvalue problem
  4. Killing fields

MSC codes

  1. 65N12
  2. 65N15
  3. 65N25
  4. 65N30

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1817691, DMS-1720369

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media