Abstract

We prove a $p$-adic version of the integral geometry formula for averaging the intersection of two $p$-adic projective varieties. We apply this result to give bounds on the number of points in the modulo $p^m$ reduction of a projective variety (reproving a result by Oesterlé) and to the study of random $p$-adic polynomial systems of equations.

Keywords

  1. integral geometry formula
  2. $p$-adic volume
  3. zeros of random polynomials

MSC codes

  1. 53C65
  2. 11S80

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Amelunxen and P. Bürgisser, Probabilistic analysis of the Grassmann condition number, Found. Comput. Math., 15 (2015), pp. 3--51.
2.
S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, J. Differential Geom., 63 (2003), pp. 63--95.
3.
P. Bürgisser and F. Cucker, Condition: The Geometry of Numerical Algorithms, Grundlehren Math. Wiss. 349, Springer, Heidelberg, 2013.
4.
A. Bernig and J. H. G. Fu, Hermitian integral geometry, Ann. of Math. (2), 173 (2011), pp. 907--945.
5.
P. Breiding, K. Kozhasov, and A. Lerario, On the geometry of the set of symmetric matrices with repeated eigenvalues, Arnold Math. J., 4 (2018), pp. 423--443.
6.
X. Caruso, Computations with $p$-Adic Numbers, https://arxiv.org/abs/1701.06794, 2017.
7.
K.-K. Choi, On the distribution of points in projective space of bounded height, Trans. Amer. Math. Soc., 352 (2000), pp. 1071--1111.
9.
X. Caruso, D. Roe, and T. Vaccon, $p$-adic stability in linear algebra, in Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2015, pp. 101--108.
10.
J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp., 50 (1988), pp. 449--480.
11.
J. D. Dixon, Exact solution of linear equations using $p$-adic expansions, Numer. Math., 40 (1982), pp. 137--141.
12.
B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, and E. I. Zelenov, $p$-adic mathematical physics: The first 30 years, p-Adic Numbers Ultrametric Anal. Appl., 9 (2017), pp. 87--121.
13.
A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.), 32 (1995), pp. 1--37.
14.
S. N. Evans, The expected number of zeros of a random system of $p$-adic polynomials, Electron. Commun. Probab., 11 (2006), pp. 278--290.
15.
B. Fisher, A note on Hensel's lemma in several variables, Proc. Amer. Math. Soc., 125 (1997), pp. 3185--3189.
16.
R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., 106 (1993).
17.
J. Igusa, An Introduction to the Theory of Local Zeta Functions, AMS/IP Stud. Adv. Math. 14, AMS, Providence, RI, 2000.
18.
M. Kiderlen, Introduction into integral geometry and stereology, in Stochastic Geometry, Spatial Statistics and Random Fields, Lecture Notes in Math. 2068, Springer, Heidelberg, 2013, pp. 21--48.
19.
A. Kulkarni, Solving p-adic polynomial systems via iterative eigenvector algorithms, Linear Multilinear Algebra, (2020), https://doi.org/10.1080/03081087.2020.1743633.
20.
Y. El Maazouz and N. M. Tran, Statistics of Gaussians on Local Fields and Their Tropicalizations, arXiv:1909.00559, 2019.
21.
J. Oesterlé, Réduction modulo $p^{n}$ des sous-ensembles analytiques fermés de ${Z}^{N}_{p}$, Invent. Math., 66 (1982), pp. 325--341.
22.
L. A. Santaló, Integral Geometry and Geometric Probability, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.
23.
P. Schneider, $p$-Adic Lie Groups, Grundlehren Math. Wiss. 344, Springer, Heidelberg, 2011.
24.
J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 54 (1981), pp. 323--401.
25.
M. Shub and S. Smale, Complexity of Bezout's theorem. II. Volumes and probabilities, in Computational Algebraic Geometry Progr. Math. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267--285.
26.
R. Schneider and J. A. Wieacker, Integral geometry, in Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 1349--1390.
27.
R. Schneider and W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008.
28.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics 1, World Scientific, River Edge, NJ, 1994.
29.
W. Weil, Kinematic integral formulas for convex bodies, in Contributions to Geometry Birkhäuser, Basel, 1979, pp. 60--75.
30.
A. Weil, Adeles and Algebraic Groups, Progr. Math. 23, Birkhäuser, Basel, 1982.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 28 - 59
ISSN (online): 2470-6566

History

Submitted: 3 September 2019
Accepted: 6 October 2020
Published online: 4 January 2021

Keywords

  1. integral geometry formula
  2. $p$-adic volume
  3. zeros of random polynomials

MSC codes

  1. 53C65
  2. 11S80

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.