Abstract

In this work we focus on two different methods to deal with parametrized partial differential equations in an efficient and accurate way. Starting from high fidelity approximations built via the hierarchical model reduction discretization, we consider two approaches, both based on a projection model reduction technique. The two methods differ for the algorithm employed during the construction of the reduced basis. In particular, the former employs the proper orthogonal decomposition, while the latter relies on a greedy algorithm according to the certified reduced basis technique. The two approaches are preliminarily compared on two-dimensional scalar and vector test cases.

Keywords

  1. hierarchical model reduction
  2. projection-based reduced order modeling
  3. proper orthogonal decomposition
  4. reduced basis method
  5. parametrized problems

MSC codes

  1. 65N30
  2. 65N35
  3. 76M10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
RBniCS---Reduced Order Modelling in FEniCS, https://www.rbnicsproject.org/ (2015).
2.
A. Abdulle and O. Budáč, A Petrov--Galerkin reduced basis approximation of the Stokes equation in parameterized geometries, C. R. Math., 353 (2015), pp. 641--645.
3.
M. Aletti, S. Perotto, and A. Veneziani, HiMod reduction of advection-diffusion-reaction problems with general boundary conditions, J. Sci. Comput., 76 (2018), pp. 89--119.
4.
F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1136--1161.
5.
D. Baroli, C. Cova, S. Perotto, L. Sala, and A. Veneziani, Hi-POD solution of parametrized fluid dynamics problems: Preliminary results, in Model Reduction of Parametrized Systems, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, eds., MS&A Model. Simul. Appl. 17, Springer, Berlin, 2017, pp. 235--254.
6.
O. Beckwith, S. Perotto, and A. Veneziani, Inf-sup compatible HiMod discretizations for the Stokes equations, in preparation.
7.
P. Benner, M. Ohlberger, A. Cohen, and K. Willcox, Model Reduction and Approximation: Theory and Algorithms, Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017.
8.
P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Model Reduction of Parametrized Systems, Springer, New York, 2017.
9.
P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43 (2011), pp. 1457--1472.
10.
D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Flement Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Berlin, 2013.
11.
Y. A. Brandes Costa Barbosa and S. Perotto, Hierarchically reduced models for the stokes problem in patient-specific artery segments, Int. J. Comput. Fluid Dyn., 34 (2020), pp. 160--171.
12.
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM Math. Model. Numer. Anal., 8 (1974), pp. 129--151.
13.
A. Buffa, Y. Maday, A. Patera, C. Prud'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 595--603.
14.
C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, 2006.
15.
P. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
16.
R. DeVore, G. Petrova, and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces, Constr. Approx., 37 (2013), pp. 455--466.
17.
A. Ern, S. Perotto, and A. Veneziani, Hierarchical model reduction for advection-diffusion-reaction problems, in Numerical Mathematics and Advanced Applications, K. Kunisch, G. Of, and O. Steinbach, eds., Springer, Berlin, 2008, pp. 703--710.
18.
A. Gerner and K. Veroy, Certified reduced basis methods for parametrized saddle point problems, SIAM J. Sci. Comput., 34 (2012), pp. A2812--A2836.
19.
G. Golub and C. Van Loan, Matrix Computation, 4th ed., Johns Hopkins University Press, Baltimore, 2013.
20.
S. Guzzetti, S. Perotto, and A. Veneziani, Hierarchical model reduction for incompressible fluids in pipes, Internat. J. Numer. Methods Engrg., 114 (2018), pp. 469--500.
21.
J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Springer Briefs Math. Springer, Berlin, 2016.
22.
J. Hesthaven, B. Stamm, and S. Zhang, Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 259--283.
23.
D. Huynh, G. Rozza, S. Sen, and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf--sup stability constants, C. R. Math., 345 (2007), pp. 473--478.
24.
T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, Model order reduction in fluid dynamics: Challenges and perspectives, in Reduced Order Methods for Modeling and Computational Reduction, Springer, New York, 2014, pp. 235--273.
25.
A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Lect. Notes. Comput. Sci. Eng. 84, Springer, 2012.
26.
M. Lupo Pasini and S. Perotto, Hierarchical Model Reduction Driven by a Proper Orthogonal Decomposition for Parametrized Advection-Diffusion-Reaction Problems, MOX report 60/2020, submitted, 2020.
27.
Y. Maday, A. T. Patera, and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, J. Sci. Comput., 17 (2002), pp. 437--446.
28.
L. Mansilla Alvarez, P. Blanco, C. Bulant, E. Dari, A. Veneziani, and R. Feijóo, Transversally enriched pipe element method (TEPEM): An effective numerical approach for blood flow modeling, Internat. J. Numer. Methods Biomed. Eng., 33 (2017), pp. e02808, 24pp.
29.
G. Meglioli, F. Ballarin, S. Perotto, and G. Rozza, Comparison of Model Order Reduction Approaches in Parametrized Optimal Control Problems, in preparation.
30.
S. Perotto, Hierarchical model (Hi-Mod) reduction in non-rectilinear domains, in Domain Decomposition Methods in Science and Engineering, J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds., Lect. Notes Comput. Sci. Eng. 98, Springer, Berlin, 2014, pp. 477--485.
31.
S. Perotto, A survey of Hierarchical Model (Hi-Mod) reduction methods for elliptic problems, in Numerical Simulations of Coupled Problems in Engineering, S. Idelsohn, ed., Comput. Methods Appl. Sci. 33, Springer, Berlin, 2014, pp. 217--241.
32.
S. Perotto, A. Ern, and A. Veneziani, Hierarchical local model reduction for elliptic problems: A domain decomposition approach, Multiscale Model. Simul., 8 (2010), pp. 1102--1127.
33.
S. Perotto, A. Reali, P. Rusconi, and A. Veneziani, HIGAMod: A Hierarchical IsoGeometric Approach for MODel reduction in curved pipes, Comput. & Fluids, 142 (2017), pp. 21--29.
34.
S. Perotto and A. Veneziani, Coupled model and grid adaptivity in hierarchical reduction of elliptic problems, J. Sci. Comput., 60 (2014), pp. 505--536.
35.
S. Perotto and A. Zilio, Hierarchical model reduction: three different approaches, in Numerical Mathematics and Advanced Applications, A. Cangiani, R. Davidchack, E. Georgoulis, A. Gorban, J. Levesley, and M. Tretyakov, eds., Springer, Berlin, 2013, pp. 851--859.
36.
S. Perotto and A. Zilio, Space-time adaptive hierarchical model reduction for parabolic equations, Adv. Model. Simul. Eng. Sci., 2 (2015), 25.
37.
A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Springer, Berlin, 2015.
38.
A. Quarteroni and G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, Comput. Sci. Eng. 9, Springer, Berlin, 2014.
39.
G. Rozza, Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, in Separated Representations and PGD-Based Model Reduction, Springer, Berlin, 2014, pp. 153--227.
40.
G. Rozza, D. Huynh, and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: Roles of the Inf-Sup stability constants, Numer. Math., 125 (2013), pp. 115--152.
41.
G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Engrg., 15 (2008), pp. 229--275.
42.
G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1244--1260.
43.
S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modeling. Lecture notes, University of Konstanz, 2012.
44.
M. Zancanaro, Hierarchical Model Reduction Techniques for Flows in a Parametric Setting, Masters thesis, Politecnico di Milano, https://www.politesi.polimi.it/handle/10589/134020, 2017.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 267 - 293
ISSN (online): 1540-3467

History

Submitted: 4 September 2019
Accepted: 3 December 2020
Published online: 8 February 2021

Keywords

  1. hierarchical model reduction
  2. projection-based reduced order modeling
  3. proper orthogonal decomposition
  4. reduced basis method
  5. parametrized problems

MSC codes

  1. 65N30
  2. 65N35
  3. 76M10

Authors

Affiliations

Funding Information

Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 681447, 872442
Istituto Nazionale di Alta Matematica "Francesco Severi" https://doi.org/10.13039/100009112

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media