Abstract

In this work, we address the local controllability of a one-dimensional free boundary problem for a fluid governed by the viscous Burgers equation. The free boundary manifests itself as one moving end of the interval, and its evolution is given by the value of the fluid velocity at this endpoint. We prove that, by means of a control actuating along the fixed boundary, we may steer the fluid to constant velocity in addition to prescribing the free boundary's position, provided the initial velocities and interface positions are close enough.

Keywords

  1. controllability
  2. free boundary problem
  3. viscous Burgers equation

MSC codes

  1. 93B05
  2. 35R35
  3. 35Q35
  4. 93C20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Badra and T. Takahashi, Feedback stabilization of a simplified $1$D fluid--particle system, Ann. Inst. Henri Poincaré Non Linéaire Anal., 31 (2014), pp. 369--389, https://doi.org/10.1016/j.anihpc.2013.03.009.
2.
J. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math., 34 (1981), pp. 359--392.
3.
J. Beale, Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal., 84 (1984), pp. 307--352.
4.
M. Boulakia and S. Guerrero, Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc. (JEMS), 15 (2013), pp. 825--856.
5.
A. Caboussat, Numerical simulation of two-phase free surface flows, Arch. Comput. Methods Eng., 12 (2005), pp. 165--224.
6.
A. Caboussat and J. Rappaz, Analysis of a one-dimensional free boundary flow problem, Numer. Math., 101 (2005), pp. 67--86.
7.
N. Cindea, S. Micu, I. Roventa, and M. Tucsnak, Particle supported control of a fluid-particle system, J. Math. Pures Appl., 104 (2014), pp. 311--353, https://doi.org/10.1016/j.matpur.2015.02.009.
8.
R. Demarque and E. Fernández-Cara, Local null controllability of one-phase Stefan problems in 2D star-shaped domains, J. Evol. Equ., 18 (2018), pp. 245--261.
9.
W. B. Dunbar, N. Petit, P. Rouchon, and P. Martin, Boundary control of a nonlinear Stefan problem, in Proceedings of the 42nd IEEE International Conference on Decision and Control, Vol. 2, IEEE, 2003, pp. 1309--1314.
10.
W. B. Dunbar, N. Petit, P. Rouchon, and P. Martin, Motion planning for a nonlinear Stefan problem, ESAIM Control Optim. Calc. Var., 9 (2003), pp. 275--296.
11.
S. Ervedoza, Control issues and linear projection constraints on the control and on the controlled trajectory, North-West. Eur. J. Math., 6 (2020), pp. 165--197.
12.
S. Ervedoza and M. Savel, Local boundary controllability to trajectories for the 1d compressible Navier Stokes equations, ESAIM Control Optim. Calc. Var., 24 (2018), pp. 211--235, https://doi.org/10.1051/cocv/2017008.
13.
E. Fernández-Cara and I. T. de Sousa, Local null controllability of a free-boundary problem for the semilinear 1D heat equation, Bull. Braz. Math. Soc. (N.S.), 48 (2017), pp. 303--315.
14.
E. Fernández-Cara and A. Doubova, Some control results for simplified one-dimensional models of fluid-solid interaction, Math. Models Methods Appl. Sci., 15 (2005), pp. 783--824, https://doi.org/10.1142/S0218202505000522.
15.
E. Fernández-Cara, S. Guerrero, O. Imanuvilov, and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), pp. 1501--1542, https://doi.org/10.1016/j.matpur.2004.02.010.
16.
E. Fernández Cara, F. Hernández, and J. Limaco Ferrel, Local null controllability of a 1D Stefan problem, Bull. Braz. Math. Soc. (N.S.), 50 (2019), pp. 745--769.
17.
E. Fernández-Cara, J. Limaco Ferrel, and S. Dias Bezerra de Menezes, On the controllability of a free-boundary problem for the $1$D heat equation, Syst. Cont. Lett., 87 (2016).
18.
A. Furskikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. 34, Soul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996.
19.
B. Geshkovski, Null-controllability of perturbed porous medium gas flow, ESAIM Control Optim. Calc. Var., 26 (2020), 85.
20.
O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system, J. Math. Pures Appl., 87 (2007), pp. 408--437, https://doi.org/10.1016/j.matpur.2007.01.005.
21.
S. Koga, M. Diagne, and M. Krstic, Output feedback control of the one-phase Stefan problem, in Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, pp. 526--531.
22.
S. Koga, M. Diagne, and M. Krstic, Control and state estimation of the one-phase Stefan problem via backstepping design, IEEE Trans. Automat. Control, 64 (2018), pp. 510--525.
23.
S. Koga, M. Diagne, S. Tang, and M. Krstic, Backstepping control of the one-phase Stefan problem, in Proceedings of the 2016 American Control Conference (ACC), IEEE, 2016, pp. 2548--2553.
24.
S. Koga and M. Krstic, Single-boundary control of the two-phase Stefan system, Syst. Cont. Lett., 135 (2020), 104573.
25.
K. Koike, Long-time behavior of a point mass in a one-dimensional viscous compressible fluid and pointwise estimates of solutions, J. Differential Equations, 271 (2021), pp. 356--413.
26.
Y. Liu, T. Takahashi, and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model, ESAIM Control Optim. Calc. Var., 19 (2013), pp. 20--42, https://doi.org/10.1051/cocv/2011196.
27.
D. Maity and M. Tucsnak, A maximal regularity approach to the analysis of some particulate Flows, in Particles in Flows, Adv. Math. Fluid Mech., Birkhäuser, Cham, Switzerland, 2017, pp. 1--75.
28.
D. Maity, M. Tucsnak, and E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. Math. Pures Appl., 129 (2019), pp. 153--179.
29.
V. Maronnier, M. Picasso, and J. Rappaz, Numerical simulation of free surface flows, J. Comput. Phys., 155 (1999), pp. 439--455, https://doi.org/10.1006/jcph.1999.6346.
30.
O. Nakoulima, Contrôlabilité à zéro avec contraintes sur le contrôle, C.R. Math., 339 (2004), pp. 405--410, https://doi.org/10.1016/j.crma.2004.07.005.
31.
D. Phan and S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Systems, 30 (2018), 11, https://doi.org/10.1007/s00498-018-0218-0.
32.
M. Ramaswamy, A. Roy, and T. Takahashi, Remark on the global null controllability for a viscous Burgers-particle system with particle supported control, Appl. Math. Lett., (2020), 106483.
33.
J. Vázquez and E. Zuazua, Large time behavior for a simplified $1$D model of fluid-solid interaction, Comm. Partial Differential Equations, 28 (2003), pp. 1705--1738, https://doi.org/10.1081/PDE-120024530.
34.
J. Vázquez and E. Zuazua, Lack of collision in a simplified $1$D model of fluid-solid interaction, Math. Models Methods Appl. Sci, 16 (2006), pp. 637--678.
35.
T. A. Ziane, H. Ouzzane, and O. Zair, A Carleman estimate for the two dimensional heat equation with mixed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), pp. 97--100.
36.
E. Zuazua, Asymptotic Behavior of Scalar Convection-diffusion Equations, preprint, arXiv:2003.11834, 2020.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 1830 - 1850
ISSN (online): 1095-7138

History

Submitted: 4 September 2019
Accepted: 19 February 2021
Published online: 6 May 2021

Keywords

  1. controllability
  2. free boundary problem
  3. viscous Burgers equation

MSC codes

  1. 93B05
  2. 35R35
  3. 35Q35
  4. 93C20

Authors

Affiliations

Funding Information

Alexander von Humboldt-Stiftung https://doi.org/10.13039/100005156

Funding Information

Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : FA9550-18-1-0242

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659

Funding Information

Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 765579-ConFlex

Funding Information

Horizon 2020 Framework Programme https://doi.org/10.13039/100010661 : 694126-DyCon

Funding Information

Ministerio de Economía, Industria y Competitividad, Gobierno de España https://doi.org/10.13039/501100010198 : MTM2017-92996-C2-1-R

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.