Abstract

We present a method for solving the transshipment problem---also known as uncapacitated minimum cost flow---up to a multiplicative error of $ 1 + \varepsilon $ in undirected graphs with nonnegative edge weights using a tailored gradient descent algorithm. Using $\widetilde{O}(\cdot)$ to hide polylogarithmic factors in $n$ (the number of nodes in the graph), our gradient descent algorithm takes $ \widetilde O(\varepsilon^{-2}) $ iterations, and in each iteration it solves an instance of the transshipment problem up to a multiplicative error of $ \polylog n $. In particular, this allows us to perform a single iteration by computing a solution on a sparse spanner of logarithmic stretch. Using a randomized rounding scheme, we can further extend the method to finding approximate solutions for the single-source shortest paths (SSSP) problem. As a consequence, we improve upon prior works by obtaining the following results: (1) Broadcast CONGEST model: $ (1 + \varepsilon) $-approximate SSSP using $ \widetilde{O} ((\sqrt{n} + D) \varepsilon^{-3}) $ rounds, where $ D $ is the (hop) diameter of the network. (2) Broadcast Congested Clique model: $ (1 + \varepsilon) $-approximate transshipment and SSSP using $ \widetilde{O} (\varepsilon^{-2}) $ rounds. (3) Multipass Streaming model: $ (1 + \varepsilon) $-approximate transshipment and SSSP using $ \widetilde{O} (n) $ space and $ \widetilde{O} (\varepsilon^{-2}) $ passes. The previously fastest SSSP algorithms for these models leverage sparse hop sets. We bypass the hop set construction; computing a spanner is sufficient with our method. The above bounds assume nonnegative edge weights that are polynomially bounded in $n$; for general nonnegative weights, there is an additional multiplicative overhead equal to the logarithm of the maximum ratio between nonzero weights. Our algorithms can also handle asymmetric costs for traversing edges in opposite directions. In this case, we obtain an additional multiplicative dependence of the maximum ratio between the two costs on some edge.

Keywords

  1. shortest paths
  2. gradient descent
  3. distributed algorithms
  4. streaming algorithms

MSC codes

  1. 68W15
  2. 05C85
  3. 05C12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Abboud, G. Bodwin, and S. Pettie, A hierarchy of lower bounds for sublinear additive spanners, SIAM J. Comput., 47 (2018), pp. 2203--2236, https://doi.org/10.1137/16M1105815.
2.
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows---Theory, Algorithms and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.
3.
Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the ACM Symposium on the Theory of Computing (STOC), 1998, pp. 161--168, https://doi.org/10.1145/276698.276725.
4.
S. Baswana, Streaming algorithm for graph spanners---Single pass and constant processing time per edge, Inform. Process. Lett., 106 (2008), pp. 110--114, https://doi.org/10.1016/j.ipl.2007.11.001.
5.
S. Baswana and S. Sen, A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs, Random Structures Algorithms, 30 (2007), pp. 532--563, https://doi.org/10.1002/rsa.20130.
6.
R. Bellman, On a routing problem, Quart. Appl. Math., 16 (1958), pp. 87--90.
7.
A. Bernstein, Fully dynamic $(2 + \epsilon)$ approximate all-pairs shortest paths with fast query and close to linear update time, in Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2009, pp. 693--702, https://doi.org/10.1109/FOCS.2009.16.
8.
G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan, Parallel shortest paths using radius stepping, in Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016, pp. 443--454, https://doi.org/10.1145/2935764.2935765.
9.
G. S. Brodal, J. L. Träff, and C. D. Zaroliagis, A parallel priority queue with constant time operations, J. Parallel Distr. Com., 49 (1998), pp. 4--21, https://doi.org/10.1006/jpdc.1998.1425.
10.
K. Censor-Hillel, M. Dory, J. H. Korhonen, and D. Leitersdorf, Fast approximate shortest paths in the congested clique, in Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), 2019, pp. 74--83, https://doi.org/10.1145/3293611.3331633.
11.
K. Censor-Hillel, P. Kaski, J. H. Korhonen, C. Lenzen, A. Paz, and J. Suomela, Algebraic methods in the congested clique, Distrib. Comput., 32 (2019), pp. 461--478, https://doi.org/10.1007/s00446-016-0270-2.
12.
P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng, Electrical flows, Laplacian systems, and faster approximation of maximum flow in undirected graphs, in Proceedings of the ACM Symposium on Theory of Computing (STOC), 2011, pp. 273--282, https://doi.org/10.1145/1993636.1993674.
13.
E. Cohen, Using selective path-doubling for parallel shortest-path computations, J. Algorithms, 22 (1997), pp. 30--56, https://doi.org/10.1006/jagm.1996.0813.
14.
E. Cohen, Polylog-time and near-linear work approximation scheme for undirected shortest paths, J. ACM, 47 (2000), pp. 132--166, https://doi.org/10.1145/331605.331610.
15.
M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu, Negative-weight shortest paths and unit capacity minimum cost flow in $ \tilde O (m^{10/7} \log W) $ time, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, https://doi.org/10.1137/1.9781611974782.48.
16.
S. I. Daitch and D. A. Spielman, Faster approximate lossy generalized flow via interior point algorithms, in Proceedings of the ACM Symposium on Theory of Computing (STOC), 2008, pp. 451--460, https://doi.org/10.1145/1374376.1374441.
17.
A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and R. Wattenhofer, Distributed verification and hardness of distributed approximation, SIAM J. Comput., 41 (2012), pp. 1235--1265, https://doi.org/10.1137/11085178X.
18.
J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems, J. ACM, 19 (1972), pp. 248--264, https://doi.org/10.1145/321694.321699.
19.
M. Elkin, An unconditional lower bound on the time-approximation trade-off for the distributed minimum spanning tree problem, SIAM J. Comput., 36 (2006), pp. 433--456, https://doi.org/10.1137/S0097539704441058.
20.
M. Elkin, Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners, ACM Trans. Algorithms, 7 (2011), pp. 20:1--20:17, https://doi.org/10.1145/1921659.1921666.
21.
M. Elkin, Distributed exact shortest paths in sublinear time, J. ACM, 67 (2020), pp. 15:1--15:36, https://doi.org/10.1145/3387161.
22.
M. Elkin, Y. Emek, D. A. Spielman, and S. Teng, Lower-stretch spanning trees, SIAM J. Comput., 38 (2008), pp. 608--628, https://doi.org/10.1137/050641661.
23.
M. Elkin and O. Neiman, Hopsets with constant hopbound, and applications to approximate shortest paths, in Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2016, pp. 128--137, https://doi.org/10.1109/FOCS.2016.22.
24.
M. Elkin and O. Neiman, Linear-size hopsets with small hopbound, and constant-hopbound hopsets in RNC, in Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2019, pp. 333--341, https://doi.org/10.1145/3323165.3323177.
25.
M. Elkin and J. Zhang, Efficient algorithms for constructing ($1+\epsilon$, $\beta$)-spanners in the distributed and streaming models, Distrib. Comput., 18 (2006), pp. 375--385, https://doi.org/10.1007/s00446-005-0147-2.
26.
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, On graph problems in a semi-streaming model, Theoret. Comput. Sci., 348 (2005), pp. 207--216, https://doi.org/10.1016/j.tcs.2005.09.013.
27.
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, Graph distances in the data-stream model, SIAM J. Comput., 38 (2008), pp. 1709--1727, https://doi.org/10.1137/070683155.
28.
L. R. Ford, Network Flow Theory, Technical report P-923, The RAND Corporation, 1956.
29.
S. Forster and D. Nanongkai, A faster distributed single-source shortest paths algorithm, in Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2018, pp. 686--697, https://doi.org/10.1109/FOCS.2018.00071, https://arxiv.org/abs/1711.01364.
30.
M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM, 34 (1987), pp. 596--615, https://doi.org/10.1145/28869.28874.
31.
M. Ghaffari and J. Li, Improved distributed algorithms for exact shortest paths, in Proceedings of the ACM SIGACT Symposium on Theory of Computing (STOC), 2018, pp. 431--444, https://doi.org/10.1145/3188745.3188948.
32.
A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM J. Comput., 24 (1995), pp. 494--504, https://doi.org/10.1137/S0097539792231179.
33.
V. Guruswami and K. Onak, Superlinear lower bounds for multipass graph processing, Algorithmica, 76 (2016), pp. 654--683, https://doi.org/10.1007/s00453-016-0138-7.
34.
T. D. Hansen, H. Kaplan, R. E. Tarjan, and U. Zwick, Hollow heaps, ACM Trans. Algorithms, 13 (2017), pp. 42:1--42:27, https://doi.org/10.1145/3093240.
35.
M. Henzinger, S. Krinninger, and D. Nanongkai, A deterministic almost-tight distributed algorithm for approximating single-source shortest paths, in Proceedings of the ACM SIGACT Symposium on Theory of Computing (STOC), 2016, pp. 489--498, https://doi.org/10.1145/2897518.2897638.
36.
M. Henzinger, S. Krinninger, and D. Nanongkai, Decremental single-source shortest paths on undirected graphs in near-linear total update time, J. ACM, 65 (2018), pp. 36:1--36:40, https://doi.org/10.1145/3218657.
37.
S. Huang and S. Pettie, Thorup-Zwick emulators are universally optimal hopsets, Inform. Process. Lett., 142 (2019), pp. 9--13, https://doi.org/10.1016/j.ipl.2018.10.001.
38.
J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 217--226, https://doi.org/10.1137/1.9781611973402.16.
39.
P. N. Klein and S. Subramanian, A randomized parallel algorithm for single-source shortest paths, J. Algorithms, 25 (1997), pp. 205--220, https://doi.org/10.1006/jagm.1997.0888.
40.
B. Korte and J. Vygen, Combinatorial Optimization, Springer, New York, 2000.
41.
F. Le Gall, Further algebraic algorithms in the congested clique model and applications to graph-theoretic problems, in Proceedings of the International Symposium on Distributed Computing (DISC), 2016, pp. 57--70, https://doi.org/10.1007/978-3-662-53426-7_5.
42.
Y. T. Lee and A. Sidford, Path finding methods for linear programming: Solving linear programs in $ \tilde O (\sqrt{} rank) $ iterations and faster algorithms for maximum flow, in Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 424--433, https://doi.org/10.1109/FOCS.2014.52.
43.
C. Lenzen and B. Patt-Shamir, Fast routing table construction using small messages, in Proceedings of the ACM Symposium on Theory of Computing (STOC), 2013, pp. 381--390, https://doi.org/10.1145/2488608.2488656.
44.
Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg, Minimum-weight spanning tree construction in $ O(\log \log n) $ communication rounds, SIAM J. Comput., 35 (2005), pp. 120--131, https://doi.org/10.1137/S0097539704441848.
45.
U. Meyer and P. Sanders, $\Delta$-stepping: A parallelizable shortest path algorithm, J. Algorithms, 49 (2003), pp. 114--152, https://doi.org/10.1016/S0196-6774(03)00076-2.
46.
G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, Improved parallel algorithms for spanners and hopsets, in Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015, pp. 192--201, https://doi.org/10.1145/2755573.2755574.
47.
A. Madry, Navigating central path with electrical flows: From flows to matchings, and back, in Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2013, pp. 253--262, https://doi.org/10.1109/FOCS.2013.35.
48.
D. Nanongkai, Distributed approximation algorithms for weighted shortest paths, in Proceedings of the ACM Symposium on Theory of Computing (STOC), 2014, pp. 565--573, https://doi.org/10.1145/2591796.2591850.
49.
J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm, Oper. Res., 41 (1993), pp. 338--350, https://doi.org/10.1287/opre.41.2.338.
50.
D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, 2000.
51.
L. Roditty, M. Thorup, and U. Zwick, Deterministic constructions of approximate distance oracles and spanners, in Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP), 2005, pp. 261--272, https://doi.org/10.1007/11523468_22.
52.
A. Schrijver, Combinatorial Optimization, Springer, New York, 2003.
53.
J. Sherman, Nearly maximum flows in nearly linear time, in Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2013, pp. 263--269, https://doi.org/10.1109/FOCS.2013.36.
54.
J. Sherman, Generalized preconditioning and network flow problems, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 772--780, https://doi.org/10.1137/1.9781611974782.49.
55.
H. Shi and T. H. Spencer, Time-work tradeoffs of the single-source shortest paths problem, J. Algorithms, 30 (1999), pp. 19--32, https://doi.org/10.1006/jagm.1998.0968.
56.
T. H. Spencer, Time-work tradeoffs for parallel algorithms, J. ACM, 44 (1997), pp. 742--778, https://doi.org/10.1145/265910.265923.
57.
M. Thorup, Undirected single-source shortest paths with positive integer weights in linear time, J. ACM, 46 (1999), pp. 362--394, https://doi.org/10.1145/316542.316548.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 815 - 856
ISSN (online): 1095-7111

History

Submitted: 12 September 2019
Accepted: 29 January 2021
Published online: 4 May 2021

Keywords

  1. shortest paths
  2. gradient descent
  3. distributed algorithms
  4. streaming algorithms

MSC codes

  1. 68W15
  2. 05C85
  3. 05C12

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media