Homogenization of Two-Phase Flow in Porous Media From Pore to Darcy Scale: A Phase-Field Approach

Abstract

It is well known that the generalized Darcy law describing multiphase flow in porous media has some shortcomings. In particular, it cannot explain hysteresis effects in the capillary pressure--saturation curve which have been observed in measurements. In this work, we derive a numerically tractable micro-macro model including coupled generalized Darcy's laws that still includes the microscale dynamics which are responsible, e.g., for hysteresis effects. For this purpose, we extend the two-scale expansion approach of periodic homogenization to include different time scales which allows us to start from a fully instationary Navier--Stokes--Cahn--Hilliard model at the pore scale as microscale. Identifying and separating the time scales allows us to derive local fast scale equations describing the microscale dynamics and global slow-scale equations giving rise to the macroscopic Darcy law.

Keywords

  1. homogenization
  2. time scales
  3. two-phase flow
  4. porous media
  5. Navier--Stokes
  6. phase-field

MSC codes

  1. 35B27
  2. 76S05
  3. 76D05
  4. 65L60
  5. 35G20
  6. 35Q35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Abels, H. Garcke, and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, https://doi.org/10.1142/S0218202511500138.
2.
J. Chen, S. Sun, and X. Wang, Homogenization of two-phase fluid flow in porous media via volume averaging, J. Comput. Appl. Math., 353 (2018), pp. 265--282, https://doi.org/10.1016/j.cam.2018.12.023.
3.
K. Daly and T. Roose, Homogenization of two fluid flow in porous media, Proc. A, 471 (2015), 2014 0564 https://doi.org/10.1098/rspa.2014.0564.
4.
H. Ding, P. D. M. Spelt, and C. Shu, Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226 (2007), pp. 2078--2095, https://doi.org/10.1016/j.jcp.2007.06.028.
5.
C. Eck, H. Garcke, and P. Knabner, Mathematical Modeling, Springer Undergrad. Math. Ser., Springer, Cham, 2017.
6.
H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), pp. 418--491.
7.
W. G. Gray and C. T. Miller, Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium System, Springer, Cham, 2014, https://doi.org/10.1007/978-3-319-04010-3.
8.
M. E. Gurtin, D. Polignone, and J. Vin͂als, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), p. 815, https://doi.org/10.1142/S0218202596000341.
9.
S. M. Hassanizadeh and W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resources Res., 29 (1993), pp. 3389--3405.
10.
R. Helmig, Multiphase Flow and Processes in the Subsurface. A Contribution on the Modeling of Hydrosystems, Springer, Cham, 1997.
11.
P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys., 49 (1977), pp. 435--479, https://doi.org/10.1103/RevModPhys.49.435.
12.
U. Hornung, ed., Homogenization and Porous Media, Springer, Cham, 1997.
13.
V. Joekar-Niasar, S. M. Hassanizadeh, and A. Leijnse, Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-network modeling, Transp. Porous Media, 74 (2008), pp. 201--219, https://doi.org/10.1007/s11242-007.9191-7.
14.
J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn--Hilliard fluids and topological transitions, Proc. A, 454 (1998), pp. 2617--2654, https://doi.org/10.1098/rspa.1998.0273.
15.
J. Niessner and S. M. Hassanizadeh, A model for two-phase flow in porous media including fluid-fluid interfacial area, Water Resources Res., 44 (2008), pp. 1--10, https://doi.org/10.1029/2007WR006721.
16.
L. Onsager, Reciprocal relations in irreversible processes. I., Phys. Rev., 37 (1931), pp. 405--426, https://doi.org/10.1103/PhysRev.37.405.
17.
L. Onsager, Reciprocal relations in irreversible processes. II., Phys. Rev., 38 (1931), pp. 2265--2279, https://doi.org/10.1103/PhysRev.38.2265.
18.
G. A. Paviliotis and A. M. Stuart, Multiscale Methods. Averaging and Homogenization, Springer, Cham, 2008, https://doi.org/10.1007/978-0-387-73829-1.
19.
T. Qian, X. Wang, and P. Sheng, A variational approach to the moving contact line hydrodynamics, J. Fluid Mech., 564 (2006), pp. 333--360, https://doi.org/10.1017/S0022112006001935.
20.
N. Ray, J. Oberlander, and P. Frolkovic, Numerical investigation of a fully coupled micro-macro model for mineral dissolution and precipitation, Comput. Geosci., 23 (2019), https://doi.org/10.1007/s10596-019-09876-x.
21.
M. Schmuck, M. Pradas, G. Pavliotis, and S. Kalliadasis, Derivation of effective macroscopic Stokes--Cahn--Hilliard equations for periodic immiscible flows in porous media, Nonlinearity, 26 (2013), 3259.
22.
S. Whitaker, Flow in porous media ii: The governing equations for immiscible, two-phase flow, Transp. Porous Media, 1 (2019), pp. 105--125.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 320 - 343
ISSN (online): 1540-3467

History

Submitted: 18 September 2019
Accepted: 16 October 2020
Published online: 16 February 2021

Keywords

  1. homogenization
  2. time scales
  3. two-phase flow
  4. porous media
  5. Navier--Stokes
  6. phase-field

MSC codes

  1. 35B27
  2. 76S05
  3. 76D05
  4. 65L60
  5. 35G20
  6. 35Q35

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS 1759536

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media