Abstract

We introduce an iterative method named BiLQ for solving general square linear systems $Ax=b$ that is based on the Lanczos biorthogonalization process defined by least-norm subproblems and that is a natural companion to BiCG and Qmr. Whereas the iterates of BiCG, Cgs, and BiCGStab may not exist when the tridiagonal projection of $A$ is singular, BiLQ is reliable on compatible systems even if $A$ is ill-conditioned or singular. As in the symmetric case, the BiCG residual is often smaller than the BiLQ residual, and when the BiCG iterate exists, an inexpensive transfer from the BiLQ iterate is possible. Although the Euclidean norm of the BiLQ error is usually not monotonic, it is monotonic in a different norm that depends on the Lanczos vectors. We establish a similar property for the Qmr residual. BiLQ combines with Qmr to take advantage of two initial vectors and solve a system and an adjoint system simultaneously at a cost similar to that of applying either method. We derive an analogous combination of Usymlq and Usymlqr based on the orthogonal tridiagonalization process. The resulting combinations, named BiLQR and TriLQR, may be used to estimate integral functionals involving the solution of a primal and an adjoint system. We compare BiLQR and TriLQR with Minres-qlp on a related augmented system, which performs a comparable amount of work and requires comparable storage. In our experiments, BiLQR terminates earlier than TriLQR and Minres-qlp in terms of residual and error of the primal and adjoint systems.

Keywords

  1. least-norm subproblems
  2. Lanczos biorthogonalization process
  3. adjoint systems
  4. integral functional
  5. orthogonal
  6. tridiagonalization process
  7. quasi-minimum error method
  8. iterative methods
  9. multiprecision

MSC codes

  1. 15A06
  2. 65F10
  3. 65F25
  4. 65F50
  5. 93E24
  6. 90C06

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math., 9 (1951), pp. 17--29, https://doi.org/10.1090/qam/42792.
2.
J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing, SIAM Rev., 59 (2017), pp. 65--98, https://doi.org/10.1137/141000671.
3.
A. Buttari, D. Orban, D. Ruiz, and D. Titley-Peloquin, USYMLQR: A tridiagonalization method for symmetric saddle-point systems, SIAM J. Sci. Comput., 41 (2019), pp. 409--432, https://doi.org/10.1137/18M1194900.
4.
T. T. Chisholm and D. W. Zingg, A Jacobian-free Newton-Krylov algorithm for compressible turbulent fluid flows, J. Comput. Phys., 228 (2009), pp. 3490--3507, https://doi.org/10.1016/j.jcp.2009.02.004.
5.
S.-C. Choi, C. C. Paige, and M. A. Saunders, MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems, SIAM J. Sci. Comput., 33 (2011), pp. 1810--1836, https://doi.org/10.1137/100787921.
6.
T. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), pp. 1--25, https://doi.org/10.1145/2049662.2049663.
7.
T. A. Davis and E. P. Natarajan, Sparse matrix methods for circuit simulation problems, in Scientific Computing in Electrical Engineering SCEE 2010, Springer, New York, 2012, pp. 3--14, https://doi.org/10.1007/978-3-642-22453-9_1.
8.
R. Estrin, D. Orban, and M. A. Saunders, Euclidean-norm error bounds for SYMMLQ and CG, SIAM J. Matrix Anal. Appl., 40 (2019a), pp. 235--253, https://doi.org/10.1137/16M1094816.
9.
R. Estrin, D. Orban, and M. A. Saunders, LNLQ: An iterative method for least-norm problems with an error minimization property, SIAM J. Matrix Anal. Appl., 40 (2019b), pp. 1102--1124, https://doi.org/10.1137/18M1194948.
10.
R. Estrin, D. Orban, and M. A. Saunders, LSLQ: An iterative method for least-squares with an error minimization property, SIAM J. Matrix Anal. Appl., 40 (2019c), pp. 254--275, https://doi.org/10.1137/17M1113552.
11.
R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, Springer, New York, 1976, pp. 73--89, https://doi.org/10.1007/BFb0080116.
12.
R. W. Freund and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315--339, https://doi.org/10.1007/BF01385726.
13.
G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer. Anal., 2 (1965), pp. 205--224, https://doi.org/10.1137/0702016.
14.
G. H. Golub, M. Stoll, and A. Wathen, Approximation of the scattering amplitude and linear systems, ETNA, 31 (2008), pp. 178--203.
15.
R. Herzog and K. Soodhalter, A modified implementation of MINRES to monitor residual subvector norms for block systems, SIAM J. Sci. Comput., 39 (2017), pp. A2645--A2663, https://doi.org/10.1137/16M1093021.
16.
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49 (1952), pp. 409--436, https://doi.org/10.6028/jres.049.044.
17.
M. Lai, A note on finite difference discretizations for Poisson equation on a disk, Numer. Methods Partial Differential Equations, 17 (2001), pp. 199--203, https://doi.org/10.1002/num.1.
18.
C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950), pp. 225--280, https://doi.org/10.6028/jres.045.026.
19.
J. Lu and D. Darmofal, A quasi-minimal residual method for simultaneous primal-dual solutions and superconvergent functional estimates, SIAM J. Sci. Comput., 24 (2003), pp. 1693--1709, https://doi.org/10.1137/S1064827501390625.
20.
C. C. Paige, I. Panayotov, and J.-P. M. Zemke, An augmented analysis of the perturbed two-sided Lanczos tridiagonalization process, Linear Algebra Appl., 447 (2014), pp. 119--132, https://doi.org/10.1016/j.laa.2013.05.009.
21.
C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617--629, https://doi.org/10.1137/0712047.
22.
B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), pp. 105--124, https://doi.org/10.2307/2007796.
23.
N. A. Pierce and M. B. Giles, Adjoint recovery of superconvergent functionals from PDE approximations, SIAM Rev., 42 (2000), pp. 247--264, https://doi.org/10.1137/S0036144598349423.
24.
L. Reichel and Q. Ye, A generalized LSQR algorithm, Numer. Linear Algebra Appl., 15 (2008), pp. 643--660, https://doi.org/10.1002/nla.611.
25.
M. A. Saunders, H. D. Simon, and E. L. Yip, Two conjugate-gradient-type methods for unsymmetric linear equations, SIAM J. Numer. Anal., 25 (1988), pp. 927--940, https://doi.org/10.1137/0725052.
26.
P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 36--52, https://doi.org/10.1137/0910004.
27.
H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631--644, https://doi.org/10.1137/0913035.
28.
R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 15 (1994), pp. 511--527, https://doi.org/10.1137/0915034.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 1145 - 1166
ISSN (online): 1095-7162

History

Submitted: 3 October 2019
Accepted: 8 April 2020
Published online: 4 August 2020

Keywords

  1. least-norm subproblems
  2. Lanczos biorthogonalization process
  3. adjoint systems
  4. integral functional
  5. orthogonal
  6. tridiagonalization process
  7. quasi-minimum error method
  8. iterative methods
  9. multiprecision

MSC codes

  1. 15A06
  2. 65F10
  3. 65F25
  4. 65F50
  5. 93E24
  6. 90C06

Authors

Affiliations

Funding Information

Arbour Foundation
IVADO Institute
Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media