Abstract

In a pedagogical but exhaustive manner, this survey reviews the main results on input-to-state stability (ISS) for infinite-dimensional systems. This property allows for the estimation of the impact of inputs and initial conditions on both the intermediate values and the asymptotic bound on the solutions. ISS has unified the input-output and Lyapunov stability theories and is a crucial property in the stability theory of control systems as well as for many applications whose dynamics depend on parameters, unknown perturbations, or other inputs. In this paper, starting from classic results for nonlinear ordinary differential equations, we motivate the study of the ISS property for distributed parameter systems. Then fundamental properties are given, such an ISS superposition theorem and characterizations of (global and local) ISS in terms of Lyapunov functions. We explain in detail the functional-analytic approach to ISS theory of linear systems with unbounded input operators, with special attention devoted to ISS theory of boundary control systems. The Lyapunov method is shown to be very useful for both linear and nonlinear models, including parabolic and hyperbolic partial differential equations. Next, we show the efficiency of the ISS framework in studying the stability of large-scale networks, coupled either via the boundary or via the interior of the spatial domain. ISS methodology allows for the reduction of the stability analysis of complex networks, by considering the stability properties of its components and the interconnection structure between the subsystems. An extra section is devoted to ISS theory of time-delay systems with the emphasis on techniques that are particularly suited for this class of systems. Finally, numerous applications are considered for which ISS properties play a crucial role in their study. The survey contains recent as well as classical results on systems theory and suggests many open problems.

MSC codes

  1. infinite-dimensional systems
  2. input-to-state stability
  3. Lyapunov functions
  4. partial differential equations
  5. robustness
  6. robust control

MSC codes

  1. 34H05
  2. 35Q93
  3. 37B25
  4. 37L15
  5. 93A15
  6. 93B52
  7. 93C10
  8. 93C25
  9. 93D05
  10. 93D09

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, Dissipation inequalities for the analysis of a class of PDEs, Automatica, 66 (2016), pp. 163--171.
2.
T. Ahmed-Ali, I. Karafyllis, and F. Giri, Sampled-data observers for delay systems and hyperbolic PDE-ODE loops, IEEE Trans. Automat. Control, submitted; preprint, https://arxiv.org/abs/1907.06691, 2019.
3.
D. Angeli, E. Sontag, and Y. Wang, Further equivalences and semiglobal versions of integral input to state stability, Dynam. Control, 10 (2000), pp. 127--149.
4.
D. Angeli, E. D. Sontag, and Y. Wang, A characterization of integral input-to-state stability, IEEE Trans. Automat. Control, 45 (2000), pp. 1082--1097.
5.
M. Arcak, D. Angeli, and E. Sontag, A unifying integral ISS framework for stability of nonlinear cascades, SIAM J. Control Optim., 40 (2002), pp. 1888--1904.
6.
M. Arcak, C. Meissen, and A. Packard, Networks of Dissipative Systems: Compositional Certification of Stability, Performance, and Safety, Springer, 2016.
7.
W. Arendt, C. J. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Springer, 2011.
8.
B. Augner, Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback, Ph.D. thesis, Bergische Universität Wuppertal, 2016.
9.
B. Bamieh, F. Paganini, and M. A. Dahleh, Distributed control of spatially invariant systems, IEEE Trans. Automat. Control, 47 (2002), pp. 1091--1107.
10.
B. Bamieh and P. G. Voulgaris, A convex characterization of distributed control problems in spatially invariant systems with communication constraints, Systems Control Lett., 54 (2005), pp. 575--583.
11.
H. T. Banks and J. A. Burns, Hereditary control problems: Numerical methods based on averaging approximations, SIAM J. Control Optim., 16 (1978), pp. 169--208.
12.
A. Bao, T. Liu, Z.-P. Jiang, and L. Zhang, A nonlinear small-gain theorem for large-scale infinite-dimensional systems, J. Syst. Sci. Complex., 31 (2018), pp. 188--199.
13.
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of $1$-D Hyperbolic Systems, Springer, 2016.
14.
G. Bastin, J.-M. Coron, and B. d'Andréa Novel, Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks, in Lecture Notes for the Pre-Congress Workshop on Complex Embedded and Networked Control Systems, Seoul, Korea, 2008.
15.
G. Bastin, J.-M. Coron, and S. Tamasoiu, Stability of linear density-flow hyperbolic systems under PI boundary control, Automatica, 53 (2015), pp. 37--42.
16.
A. Bátkai and S. Piazzera, Semigroups for Delay Equations, AK Peters/CRC Press, 2005.
17.
L. Baudouin, C. Prieur, F. Guignard, and D. Arzelier, Robust Control of a Bimorph Mirror for Adaptive Optics Systems, Appl. Optics, 47 (2008), pp. 3637--3645.
18.
J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer, 2013.
19.
B. Besselink and K. H. Johansson, String stability and a delay-based spacing policy for vehicle platoons subject to disturbances, IEEE Trans. Automat. Control, 62 (2017), pp. 4376--4391.
20.
N. P. Bhatia, Weak attractors in dynamical systems, Bol. Sot. Mat. Mex., 11 (1966), pp. 56--64.
21.
N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, 2002.
22.
B. J. Bialy, I. Chakraborty, S. C. Cekic, and W. E. Dixon, Adaptive boundary control of store induced oscillations in a flexible aircraft wing, Automatica, 70 (2016), pp. 230--238.
23.
F. Bribiesca Argomedo, C. Prieur, E. Witrant, and S. Bremond, A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients, IEEE Trans. Automat. Control, 58 (2013), pp. 290--303.
24.
F. Bribiesca Argomedo, E. Witrant, and C. Prieur, D1-input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances, in Proceedings of the 2012 American Control Conference (ACC), 2012, pp. 2978--2983.
25.
F. Bribiesca Argomedo, E. Witrant, and C. Prieur, Safety Factor Profile Control in a Tokamak, Springer, 2013.
26.
F. Bribiesca Argomedo, E. Witrant, C. Prieur, S. Brémond, R. Nouailletas, and J.-F. Artaud, Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma, Nuclear Fusion, 53 (2013), art. 033005.
27.
C. Bruni, G. Dipillo, and G. Koch, Bilinear systems: An appealing class of “nearly linear” systems in theory and applications, IEEE Trans. Automat. Control, 19 (1974), pp. 334--348.
28.
C. Cai and A. Teel, Characterizations of input-to-state stability for hybrid systems, Systems Control Lett., 58 (2009), pp. 47--53.
29.
C. Canudas De Wit, F. Morbidi, L. Ojeda, A. Y. Kibangou, I. Bellicot, and P. Bellemain, Grenoble traffic lab: An experimental platform for advanced traffic monitoring and forecasting [applications of control], IEEE Control Systems Mag., 35 (2015), pp. 23--39.
30.
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, 1998.
31.
A. Chaillet and D. Angeli, Integral input to state stable systems in cascade, Systems Control Lett., 57 (2008), pp. 519--527.
32.
A. Chaillet, D. Angeli, and H. Ito, Combining iISS and ISS with respect to small inputs: The strong iISS property, IEEE Trans. Automat. Control, 59 (2014), pp. 2518--2524.
33.
A. Chaillet, D. Angeli, and H. Ito, Strong iISS is preserved under cascade interconnection, Automatica, 50 (2014), pp. 2424--2427.
34.
A. Chaillet, G. Detorakis, S. Palfi, and S. Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Automatica, 83 (2017), pp. 262--274, https://doi.org/10.1016/j.automatica.2017.05.011.
35.
A. Chaillet and P. Pepe, Integral input-to-state stability of delay systems based on Lyapunov-Krasovskii functionals with point-wise dissipation rate, in Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 5451--5456.
36.
A. Chaillet, P. Pepe, P. Mason, and Y. Chitour, Is a point-wise dissipation rate enough to show ISS for time-delay systems?, IFAC-PapersOnLine, 50 (2017), pp. 14356--14361.
37.
X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), pp. 160--190.
38.
Y. Chen and G. Xu, Stabilization for a joint string equation with input disturbance, IMA J. Math. Control Inform., 36 (2017), pp. 19--40.
39.
J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math, 9 (1951), pp. 225--236.
40.
J.-M. Coron, On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim., 37 (1999), pp. 1874--1896.
41.
J. M. Coron, Control and Nonlinearity, American Mathematical Society, 2007.
42.
J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the ${C}^{1}$-norm, SIAM J. Control Optim., 53 (2015), pp. 1464--1483.
43.
J.-M. Coron, G. Bastin, and B. d'Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., 47 (2008), pp. 1460--1498.
44.
M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), pp. 265--298.
45.
R. Curtain, O. V. Iftime, and H. Zwart, System theoretic properties of a class of spatially invariant systems, Automatica, 45 (2009), pp. 1619--1627.
46.
R. F. Curtain and K. Glover, Robust stabilization of infinite dimensional systems by finite dimensional controllers, Systems Control Lett., 7 (1986), pp. 41--47.
47.
R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 1995.
48.
S. Dashkovskiy, H. Ito, and F. Wirth, On a small gain theorem for ISS networks in dissipative Lyapunov form, Eur. J. Control, 17 (2011), pp. 357--365.
49.
S. Dashkovskiy and M. Kosmykov, Input-to-state stability of interconnected hybrid systems, Automatica, 49 (2013), pp. 1068--1074.
50.
S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Anal. Hybrid Syst., 6 (2012), pp. 899--915.
51.
S. Dashkovskiy and A. Mironchenko, Input-to-state stability of infinite-dimensional control systems, Math. Control Signals Systems, 25 (2013), pp. 1--35.
52.
S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control Optim., 51 (2013), pp. 1962--1987.
53.
S. Dashkovskiy, A. Mironchenko, J. Schmid, and F. Wirth, Stability of infinitely many interconnected systems, in Proceedings of the 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2019), 2019, pp. 937--942.
54.
S. Dashkovskiy and L. Naujok, ISDS small-gain theorem and construction of ISDS Lyapunov functions for interconnected systems, Systems Control Lett., 59 (2010), pp. 299--304.
55.
S. Dashkovskiy and S. Pavlichkov, Decentralized stabilization of infinite networks of systems with nonlinear dynamics and uncontrollable linearization, in Proceedings of the 20th IFAC World Congress, 2017, pp. 1728--1734.
56.
S. Dashkovskiy and S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems and their application for stabilization, Automatica, 112 (2020), art. 108643.
57.
S. N. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), pp. 4089--4118.
58.
S. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, An ISS small gain theorem for general networks, Math Control Signals Systems, 19 (2007), pp. 93--122.
59.
S. N. Dashkovskiy, D. V. Efimov, and E. D. Sontag, Input to state stability and allied system properties, Autom. Remote Control, 72 (2011), pp. 1579--1614.
60.
F. Demourant and C. Poussot-Vassal, A new frequency-domain subspace algorithm with restricted poles location through LMI regions and its application to a wind tunnel test, Internat. J. Control, 90 (2017), pp. 779--799.
61.
C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, SIAM, 2009.
62.
A. Diagne, G. Bastin, and J.-M. Coron, Lyapunov exponential stability of $1$-D linear hyperbolic systems of balance laws, Automatica, 48 (2012), pp. 109--114.
63.
M. Diagne and M. Krstic, State-dependent input delay-compensated bang-bang control: Application to 3D printing based on screw-extruder, in Proceedings of the 2015 American Control Conference (ACC), 2015, pp. 5653--5658.
64.
M. S. Edalatzadeh and K. A. Morris, Stability and well-posedness of a nonlinear railway track model, IEEE Control Systems Lett., 3 (2019), pp. 162--167.
65.
H. A. Edwards, Y. Lin, and Y. Wang, On input-to-state stability for time varying nonlinear systems, in Proceedings of the 39th IEEE Conference on Decision and Control, 2000, pp. 3501--3506.
66.
Z. Emirsjlow and S. Townley, From PDEs with boundary control to the abstract state equation with an unbounded input operator: A tutorial, Eur. J. Control, 6 (2000), pp. 27--49.
67.
T. Endo, F. Matsuno, and Y. Jia, Boundary cooperative control by flexible Timoshenko arms, Automatica, 81 (2017), pp. 377--389.
68.
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer-Verlag, 2000.
69.
N. Espitia, A. Girard, N. Marchand, and C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica, 70 (2016), pp. 275--287.
70.
N. Espitia, A. Girard, N. Marchand, and C. Prieur, Event-based boundary control of a linear 2 x 2 hyperbolic system via backstepping approach, IEEE Trans. Automat. Control, 63 (2018), pp. 2686--2693.
71.
N. Espitia, I. Karafyllis, and M. Krstic, Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: A small-gain approach, Automatica, submitted; preprint, https://arxiv.org/abs/1909.10472, 2019.
72.
N. Espitia, A. Tanwani, and S. Tarbouriech, Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization, in Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, pp. 1266--1271.
73.
L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, 2010.
74.
H. O. Fattorini, Boundary control systems, SIAM J. Control, 6 (1968), pp. 349--385.
75.
F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, Stabilization of continuous-time linear systems subject to input quantization, Automatica, 58 (2015), pp. 167--172.
76.
F. Ferrante, F. Gouaisbaut, and S. Tarbouriech, On sensor quantization in linear control systems: Krasovskii solutions meet semidefinite programming, IMA J. Math. Control Inform., to appear.
77.
R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques, Birkhäuser, 2008.
78.
M. Géradin and D. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, 2014.
79.
R. Goebel, R. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, 2012.
80.
P. Grabowski, Admissibility of observation functionals, Internat. J. Control, 62 (1995), pp. 1161--1173.
81.
K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser, 2003.
82.
C. Guiver, H. Logemann, and M. R. Opmeer, Infinite-dimensional Lur'e systems: Input-to-state stability and convergence properties, SIAM J. Control Optim., 57 (2019), pp. 334--365.
83.
W. M. Haddad, V. S. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems, Princeton University Press, 2006.
84.
H. Haimovich and J. L. Mancilla-Aguilar, ISS implies iISS even for switched and time-varying systems (if you are careful enough), Automatica, 104 (2019), pp. 154--164.
85.
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer-Verlag, 1993.
86.
S. Hansen and G. Weiss, New results on the operator Carleson measure criterion, IMA J. Math. Control Inform., 14 (1997), pp. 3--32.
87.
A. Hastir, F. Califano, and H. Zwart, Well-posedness of infinite-dimensional linear systems with nonlinear feedback, Systems Control Lett., 128 (2019), pp. 19--25.
88.
J. Heigel, P. Michaleris, and E. Reutzel, Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti--6Al--4V, Additive Manufacturing, 5 (2015), pp. 9--19.
89.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981.
90.
J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson, and A. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment, Transport. Res. Part C Emerging Technol., 18 (2010), pp. 568--583.
91.
J. P. Hespanha and A. S. Morse, Certainty equivalence implies detectability, Systems Control Lett., 36 (1999), pp. 1--13.
92.
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, 1974.
93.
R. Hosfeld, B. Jacob, and F. Schwenninger, Input-to-State Stability of Unbounded Bilinear Control Systems, preprint, https://arxiv.org/abs/1811.08470, 2018.
94.
D. Hundertmark, M. Meyries, L. Machinek, and R. Schnaubelt, Operator semigroups and dispersive equations, in 16th Internet Seminar on Evolution Equations, 2013.
95.
H. Ito, Utility of iISS in composing Lyapunov functions, in Proceedings of the 9th IFAC Symposium on Nonlinear Control Systems, Toulouse, France, 2013, pp. 723--730.
96.
H. Ito, S. Dashkovskiy, and F. Wirth, Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems, Automatica, 48 (2012), pp. 1197--1204.
97.
B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, Remarks on input-to-state stability and non-coercive Lyapunov functions, in Proceedings of the 57th IEEE Conference on Decision and Control, Miami Beach, FL, 2018, pp. 4803--4808.
98.
B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems, SIAM J. Control Optim., to appear; preprint, https://arxiv.org/abs/1911.01327, 2019.
99.
B. Jacob, R. Nabiullin, J. R. Partington, and F. L. Schwenninger, Infinite-dimensional input-to-state stability and Orlicz spaces, SIAM J. Control Optim., 56 (2018), pp. 868--889.
100.
B. Jacob and J. R. Partington, Admissibility of control and observation operators for semigroups: A survey, in Current Trends in Operator Theory and Its Applications, Birkhäuser, 2004, pp. 199--221.
101.
B. Jacob, F. L. Schwenninger, and H. Zwart, On continuity of solutions for parabolic control systems and input-to-state stability, J. Differential Equations, 266 (2019), pp. 6284--6306.
102.
B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, Birkhäuser/Springer, 2012.
103.
B. Jayawardhana, H. Logemann, and E. P. Ryan, Infinite-dimensional feedback systems: The circle criterion and input-to-state stability, Commun. Inf. Syst., 8 (2008), pp. 413--444.
104.
B. Jayawardhana, H. Logemann, and E. P. Ryan, The circle criterion and input-to-state stability, IEEE Control Systems Mag., 31 (2011), pp. 32--67.
105.
Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996), pp. 1211--1215.
106.
Z.-P. Jiang, A. R. Teel, and L. Praly, Small-gain theorem for ISS systems and applications, Math. Control Signals Systems, 7 (1994), pp. 95--120.
107.
R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory, Vol. 1, McGraw-Hill, 1969.
108.
H. G. Kankanamalage, Output Stability Analysis for Nonlinear Systems with Time Delays, Ph.D. thesis, Florida Atlantic University, Boca Raton, FL, 2017.
109.
H. G. Kankanamalage, Y. Lin, and Y. Wang, On Lyapunov-Krasovskii characterizations of input-to-output stability, IFAC-PapersOnLine, 50 (2017), pp. 14362--14367.
110.
I. Karafyllis, Lyapunov theorems for systems described by retarded functional differential equations, Nonlinear Anal., 64 (2006), pp. 590--617.
111.
I. Karafyllis, A system-theoretic framework for a wide class of systems I: Applications to numerical analysis, J. Math. Anal. Appl., 328 (2007), pp. 876--899.
112.
I. Karafyllis and Z.-P. Jiang, A small-gain theorem for a wide class of feedback systems with control applications, SIAM J. Control Optim., 46 (2007), pp. 1483--1517.
113.
I. Karafyllis and Z.-P. Jiang, A vector small-gain theorem for general non-linear control systems, IMA J. Math. Control Inform., 28 (2011), pp. 309--344.
114.
I. Karafyllis and Z.-P. Jiang, Stability and Stabilization of Nonlinear Systems, Springer-Verlag, 2011.
115.
I. Karafyllis and Z.-P. Jiang, A new small-gain theorem with an application to the stabilization of the chemostat, Int. J. Robust. Nonlinear Control, 22 (2012), pp. 1602--1630.
116.
I. Karafyllis and M. Krstic, ISS with respect to boundary disturbances for $1$-D parabolic PDEs, IEEE Trans. Automat. Control, 61 (2016), pp. 3712--3724.
117.
I. Karafyllis and M. Krstic, ISS in different norms for 1-D parabolic PDEs with boundary disturbances, SIAM J. Control Optim., 55 (2017), pp. 1716--1751.
118.
I. Karafyllis and M. Krstic, Decay estimates for $1$-D parabolic PDEs with boundary disturbances, ESAIM Control Optim. Calc. Var., 24 (2018), pp. 1511--1540.
119.
I. Karafyllis and M. Krstic, Sampled-data boundary feedback control of $1$-D parabolic PDEs, Automatica, 87 (2018), pp. 226--237.
120.
I. Karafyllis and M. Krstic, Input-to-State Stability for PDEs, Springer, 2019.
121.
I. Karafyllis and M. Krstic, Small-gain-based boundary feedback design for global exponential stabilization of one-dimensional semilinear parabolic PDEs, SIAM J. Control Optim., 57 (2019), pp. 2016--2036, https://doi.org/10.1137/18M1213129.
122.
I. Karafyllis, M. Malisoff, F. Mazenc, and P. Pepe, Stabilization of nonlinear delay systems: A tutorial on recent results, in Recent Results on Nonlinear Delay Control Systems, Springer, 2016, pp. 1--41.
123.
I. Karafyllis, P. Pepe, and Z.-P. Jiang, Input-to-output stability for systems described by retarded functional differential equations, Eur. J. Control, 14 (2008), pp. 539--555.
124.
T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), pp. 508--520.
125.
C. Kawan, A. Mironchenko, A. Swikir, N. Noroozi, and M. Zamani, A Lyapunov-based ISS small-gain theorem for infinite networks, IEEE Trans. Automat. Control, submitted; preprint, http://arxiv.org/abs/1910.12746, 2019.
126.
C. M. Kellett, A compendium of comparison function results, Math. Control Signals Systems, 26 (2014), pp. 339--374.
127.
A. Y. Khapalov, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: A qualitative approach, SIAM J. Control Optim., 41 (2003), pp. 1886--1900.
128.
I. Kmit, Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems, Int. J. Dyn. Syst. Differ. Equ., 1 (2008), pp. 191--195.
129.
S. Koga, D. Bresch-Pietri, and M. Krstic, Delay compensated control of the Stefan problem and robustness to delay mismatch, Internat. J. Robust Nonlinear Control, 30 (2020), pp. 2304--2334.
130.
S. Koga, M. Diagne, and M. Krstic, Control and state estimation of the one-phase Stefan problem via backstepping design, IEEE Trans. Automat. Control, 64 (2018), pp. 510--525.
131.
S. Koga, I. Karafyllis, and M. Krstic, Input-to-State Stability for the Control of Stefan Problem with Respect to Heat Loss, preprint, https://arxiv.org/abs/1903.01447, 2019.
132.
P. Kokotović and M. Arcak, Constructive nonlinear control: A historical perspective, Automatica, 37 (2001), pp. 637--662.
133.
M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.), 3 (1948), pp. 3--95 (in Russian).
134.
M. Krichman, E. D. Sontag, and Y. Wang, Input-output-to-state stability, SIAM J. Control Optim., 39 (2001), pp. 1874--1928.
135.
M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, 1995.
136.
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, 2008.
137.
J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion, Czechoslovak Math. J., 81 (1956), pp. 217--259, 455--484.
138.
L. Lefèvre, D. Georges, Z. Emirsjlow, and S. Townley, Discussion on: “From PDEs with boundary control to the abstract state equation with an unbounded input operator: A tutorial,'' Eur. J. Control, 6 (2000), pp. 50--53.
139.
H. Lhachemi, C. Prieur, and R. Shorten, An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays, Automatica, 109 (2019), art. 108551.
140.
H. Lhachemi, D. Saussié, G. Zhu, and R. Shorten, Input-to-state stability of a clamped-free damped string in the presence of distributed and boundary disturbances, IEEE Trans. Automat. Control, 65 (2020), pp. 1248--1255.
141.
H. Lhachemi and R. Shorten, Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay, Automatica, 116 (2020), art. 108931.
142.
H. Lhachemi and R. Shorten, ISS property with respect to boundary disturbances for a class of Riesz-spectral boundary control systems, Automatica, 109 (2019), art. 108504.
143.
H. Li, R. Baier, L. Grüne, S. Hafstein, and F. Wirth, Computation of Local ISS Lyapunov Functions with Low Gains via Linear Programming, https://hal.inria.fr/hal-01101284, 2015.
144.
D. Liberzon, Observer-based quantized output feedback control of nonlinear systems, in Proceedings of the 15th Mediterranean Conference on Control and Automation, 2007, pp. 1--5.
145.
Y. Lin, E. D. Sontag, and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control Optim., 34 (1996), pp. 124--160.
146.
X. Litrico and V. Fromion, Modeling and Control of Hydrosystems, Springer, 2009.
147.
T. Liu, Z.-P. Jiang, and D. J. Hill, Nonlinear Control of Dynamic Networks, CRC Press, 2014.
148.
W.-J. Liu and M. Krstić, Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation, Nonlinear Anal., 43 (2001), pp. 485--507.
149.
Z. H. Luo, B. Z. Guo, and Ö. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications, Communications and Control Engineering Series, Springer-Verlag, 1999.
150.
M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions, Springer, 2009.
151.
S. Marx, V. Andrieu, and C. Prieur, Cone-bounded feedback laws for $m$-dissipative operators on Hilbert spaces, Math. Control Signals Systems, 29 (2017), art. 18.
152.
S. Marx, E. Cerpa, C. Prieur, and V. Andrieu, Global stabilization of a Korteweg--de Vries equation with saturating distributed control, SIAM J. Control Optim., 55 (2017), pp. 1452--1480.
153.
S. Marx, Y. Chitour, and C. Prieur, Stability analysis of dissipative systems subject to nonlinear damping via Lyapunov techniques, IEEE Trans. Automat. Control, 65 (2020), pp. 2139--2146.
154.
J. L. Massera, Contributions to stability theory, Ann. of Math. (2), 64 (1956), pp. 182--206.
155.
B. Mavkov, E. Witrant, and C. Prieur, Distributed control of coupled inhomogeneous diffusion in tokamak plasmas, IEEE Trans. Control Syst. Technol., 27 (2017), pp. 443--450.
156.
B. Mavkov, E. Witrant, C. Prieur, E. Maljaars, F. Felici, O. Sauter, et al., Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak, Nuclear Fusion, 58 (2018), art. 056011.
157.
B. Mavkov, E. Witrant, C. Prieur, and D. Moreau, Multi-experiment state-space identification of coupled magnetic and kinetic parameters in tokamak plasmas, Control Engrg. Practice, 60 (2017), pp. 28--38.
158.
F. Mazenc and C. Prieur, Strict Lyapunov functions for semilinear parabolic partial differential equations, Math. Control Related Fields, 1 (2011), pp. 231--250.
159.
R. Medina, C. Martinez, and C. Vidal, Exponential stability criteria for systems with multiple time delays, IMA J. Math. Control Inform., 35 (2017), pp. i73--i88.
160.
F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t={\Delta} u+|u|^{p- 1}u$, Duke Math. J, 86 (1997), pp. 143--195.
161.
G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), pp. 341--346.
162.
A. Mironchenko, Input-to-State Stability of Infinite-Dimensional Control Systems, Ph.D. thesis, Department of Mathematics and Computer Science, University of Bremen, 2012.
163.
A. Mironchenko, Local input-to-state stability: Characterizations and counterexamples, Systems Control Lett., 87 (2016), pp. 23--28.
164.
A. Mironchenko, Criteria for input-to-state practical stability, IEEE Trans. Automat. Control, 64 (2019), pp. 298--304.
165.
A. Mironchenko, Small gain theorems for general networks of heterogeneous infinite-dimensional systems, SIAM J. Control Optim., submitted; preprint, https://arxiv.org/abs/1901.03747, 2019.
166.
A. Mironchenko, Small-gain theorems for stability of infinite networks, in Proceedings of the 58th IEEE Conference on Decision and Control, Nice, France, 2019, pp. 5617--5622.
167.
A. Mironchenko, Lyapunov functions for input-to-state stability of infinite-dimensional systems with integrable inputs, in the 21st IFAC World Congress (IFAC 2020), 2020, to appear.
168.
A. Mironchenko and H. Ito, Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach, SIAM J. Control Optim., 53 (2015), pp. 3364--3382.
169.
A. Mironchenko and H. Ito, Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions, Math. Control Related Fields, 6 (2016), pp. 447--466.
170.
A. Mironchenko, I. Karafyllis, and M. Krstic, Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances, SIAM J. Control Optim., 57 (2019), pp. 510--532.
171.
A. Mironchenko, C. Prieur, and F. Wirth, Design of saturated controls for an unstable parabolic PDE, in Proceedings of the 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2019), Vienna, Austria, 2019, pp. 937--942.
172.
A. Mironchenko and F. Wirth, A note on input-to-state stability of linear and bilinear infinite-dimensional systems., in Proceedings of the 54th IEEE Conference on Decision and Control, Osaka, Japan, 2015, pp. 495--500.
173.
A. Mironchenko and F. Wirth, Input-to-state stability of time-delay systems: Criteria and open problems, in Proceedings of the 56th IEEE Conference on Decision and Control, Melbourne, Australia, 2017, pp. 3719--3724.
174.
A. Mironchenko and F. Wirth, Characterizations of input-to-state stability for infinite-dimensional systems, IEEE Trans. Automat. Control, 63 (2018), pp. 1602--1617.
175.
A. Mironchenko and F. Wirth, Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces, Systems Control Lett., 119 (2018), pp. 64--70.
176.
A. Mironchenko and F. Wirth, Existence of non-coercive Lyapunov functions is equivalent to integral uniform global asymptotic stability, Math. Control Signals Systems, 31 (2019), art. 4.
177.
A. Mironchenko and F. Wirth, Non-coercive Lyapunov functions for infinite-dimensional systems, J. Differential Equations, 105 (2019), pp. 7038--7072.
178.
D. S. Mitrinović, Elementary Inequalities, Tutorial text, P. Noordhoff, 1964.
179.
R. Nabiullin and F. L. Schwenninger, Strong input-to-state stability for infinite-dimensional linear systems, Math. Control Signals Systems, 30 (2018), art. 4.
180.
N. Noroozi, A. Khayatian, and H. R. Karimi, Semiglobal practical integral input-to-state stability for a family of parameterized discrete-time interconnected systems with application to sampled-data control systems, Nonlinear Anal. Hybrid Syst., 17 (2015), pp. 10--24.
181.
N. Noroozi, A. Mironchenko, C. Kawan, and M. Zamani, Small-gain theorem for stability, cooperative control, and distributed observation of infinite networks, IEEE Trans. Control Network Syst., submitted.
182.
J. Oostveen, Strongly Stabilizable Distributed Parameter Systems, Frontiers Appl. Math. 20, SIAM, 2000.
183.
A. A. Paranjape, J. Guan, S. J. Chung, and M. Krstic, PDE boundary control for flexible articulated wings on a robotic aircraft, IEEE Trans. Robotics, 29 (2013), pp. 625--640.
184.
P. M. Pardalos and V. Yatsenko, Optimization and Control of Bilinear Systems, Springer, 2008.
185.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.
186.
P. Pepe, On Liapunov--Krasovskii functionals under Caratheodory conditions, Automatica, 43 (2007), pp. 701--706.
187.
P. Pepe and Z.-P. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems, Systems Control Lett., 55 (2006), pp. 1006--1014.
188.
A. Pisano and Y. Orlov, On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled-in-space sensing and actuation, Automatica, 81 (2017), pp. 447--454.
189.
I. G. Polushin, S. N. Dashkovskiy, A. Takhmar, and R. V. Patel, A small gain framework for networked cooperative force-reflecting teleoperation, Automatica, 49 (2013), pp. 338--348.
190.
I. G. Polushin, A. Tayebi, and H. J. Marquez, Control schemes for stable teleoperation with communication delay based on IOS small gain theorem, Automatica, 42 (2006), pp. 905--915.
191.
C. Poussot-Vassal, F. Demourant, A. Lepage, and D. Le Bihan, Gust load alleviation: Identification, control, and wind tunnel testing of a $2$-D aeroelastic airfoil, IEEE Trans. Control Syst. Technol., 25 (2016), pp. 1736--1749.
192.
C. Prieur and F. Mazenc, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, Math. Control Signals Systems, 24 (2012), pp. 111--134.
193.
C. Prieur, S. Tarbouriech, and J. M. Gomes da Silva, Jr., Wave equation with cone-bounded control laws, IEEE Trans. Automat. Control, 61 (2016), pp. 3452--3463.
194.
B. Robu, L. Baudouin, C. Prieur, and D. Arzelier, Simultaneous ${H}_\infty$ vibration control of fluid/plate system via reduced-order controller, IEEE Trans. Control Syst. Technol., 20 (2011), pp. 700--711.
195.
C. Roman, D. Bresch-Pietri, C. Prieur, and O. Sename, Robustness to in-domain viscous damping of a collocated boundary adaptive feedback law for an anti-damped boundary wave PDE, Automatica, 64 (2019), pp. 3284--3299.
196.
B. S. Rüffer, Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space, Positivity, 14 (2010), pp. 257--283.
197.
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), pp. 639--739.
198.
P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge University Press, 1987.
199.
D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), pp. 383--431.
200.
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, 1995.
201.
J. Schmid, Weak input-to-state stability: Characterizations and counterexamples, Math. Control Signals Systems, 31 (2019), pp. 433--454.
202.
J. Schmid and H. Zwart, Stabilization of Port-Hamiltonian Systems by Nonlinear Boundary Control in the Presence of Disturbances, preprint, https://arxiv.org/abs/1804.10598, 2018.
203.
F. Schwenninger, Input-to-State Stability for Parabolic Boundary Control: Linear and Semilinear Systems, preprint, https://arxiv.org/abs/1908.08317, 2019.
204.
A. Selivanov and E. Fridman, Distributed event-triggered control of diffusion semilinear PDEs, Automatica, 68 (2016), pp. 344--351.
205.
A. Seuret and E. Fridman, Wirtinger-like Lyapunov--Krasovskii functionals for discrete-time delay systems, IMA J. Math. Control Inform., 35 (2017), pp. 861--876.
206.
Y. Sharon and D. Liberzon, Input to state stabilizing controller for systems with coarse quantization, IEEE Trans. Automat. Control, 57 (2012), pp. 830--844.
207.
R. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical Society, 2013.
208.
E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), pp. 435--443.
209.
E. D. Sontag, Comments on integral variants of ISS, Systems Control Lett., 34 (1998), pp. 93--100.
210.
E. D. Sontag, Input to state stability: Basic concepts and results, in Nonlinear and Optimal Control Theory, Springer, 2008, pp. 163--220.
211.
E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems Control Lett., 24 (1995), pp. 351--359.
212.
E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41 (1996), pp. 1283--1294.
213.
E. D. Sontag and Y. Wang, Output-to-state stability and detectability of nonlinear systems, Systems Control Lett., 29 (1997), pp. 279--290.
214.
E. D. Sontag and Y. Wang, Notions of input to output stability, Systems Control Lett., 38 (1999), pp. 235--248.
215.
A. Tanwani, S. Marx, and C. Prieur, Local input-to-state stabilization of $1$-D linear reaction-diffusion equation with bounded feedback, in Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS2018), Hong Kong, 2018, pp. 576--581.
216.
A. Tanwani, C. Prieur, and S. Tarbouriech, Input-to-state stabilization in ${H}^{1}$-norm for boundary controlled linear hyperbolic PDEs with application to quantized control, in Proceedings of the 55th IEEE Conference on Decision and Control, Las Vegas, NV, 2016, pp. 3112--3117.
217.
A. Tanwani, C. Prieur, and S. Tarbouriech, Disturbance-to-State Stabilization and Quantized Control for Linear Hyperbolic Systems, preprint, https://arxiv.org/abs/1703.00302, 2017.
218.
A. Tanwani, C. Prieur, and S. Tarbouriech, Stabilization of linear hyperbolic systems of balance laws with measurement errors, in Control Subject to Computational and Communication Constraints, Springer, 2018, pp. 357--374.
219.
S. Tarbouriech, C. Prieur, and J. M. Gomes da Silva, Jr., Stability analysis and stabilization of systems presenting nested saturations, IEEE Trans. Automat. Control, 51 (2006), pp. 1364--1371.
220.
S. Tarbouriech, C. Prieur, and I. Queinnec, Stability analysis for linear systems with input backlash through sufficient LMI conditions, Automatica, 46 (2010), pp. 1911--1915.
221.
S. Tarbouriech, I. Queinnec, and C. Prieur, Stability analysis and stabilization of systems with input backlash, IEEE Trans. Automat. Control, 59 (2014), pp. 488--494.
222.
M. Taylor, Partial Differential Equations III: Nonlinear Equations, Springer, 2013.
223.
A. R. Teel, Connections between Razumikhin-type theorems and the ISS nonlinear small-gain theorem, IEEE Trans. Automat. Control, 43 (1998), pp. 960--964.
224.
A. R. Teel and L. Praly, A smooth Lyapunov function from a class-estimate involving two positive semidefinite functions, ESAIM Control Optim. Calc. Var., 5 (2000), pp. 313--367.
225.
S. Tiwari, Y. Wang, and Z.-P. Jiang, A nonlinear small-gain theorem for large-scale time delay systems, in Proceedings of the 48th IEEE Conference on Decision and Control, 2009, held jointly with the 2009 28th Chinese Control Conference, 2009, pp. 7204--7209.
226.
S. Tiwari, Y. Wang, and Z. P. Jiang, Nonlinear small-gain theorems for large-scale time-delay systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 19 (2012), pp. 27--63.
227.
S. Tiwari, Y. Wang, and Z.-P. Jiang, Remarks on integral-ISS for systems with delays, in Proceedings of the 10th World Congress on Intelligent Control and Automation, 2012, pp. 2227--2232.
228.
J. Tsinias, Input to state stability properties of nonlinear systems and applications to bounded feedback stabilization using saturation, ESAIM Control Optim. Calc. Var., 2 (1997), pp. 57--87.
229.
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, 2009.
230.
M. Tucsnak and G. Weiss, Well-posed systems---the LTI case and beyond, Automatica, 50 (2014), pp. 1757--1779.
231.
A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Systems Control, 1 (2014), pp. 173--378.
232.
J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007.
233.
V. I. Vorotnikov, Partial stability and control: The state-of-the-art and development prospects, Autom. Remote Control, 66 (2005), pp. 511--561.
234.
G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim., 27 (1989), pp. 527--545.
235.
J. C. Willems, Dissipative dynamical systems. I: General theory, Arch. Rational Mech. Anal., 45 (1972), pp. 321--351.
236.
C.-Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems, ESAIM Control Optim. Calc. Var., 7 (2002), pp. 421--442.
237.
C.-R. Zhao and X.-J. Xie, Output feedback stabilization using small-gain method and reduced-order observer for stochastic nonlinear systems, IEEE Trans. Automat. Control, 58 (2013), pp. 523--529.
238.
J. Zheng and G. Zhu, Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations, Automatica, 97 (2018), pp. 271--277.
239.
J. Zheng and G. Zhu, A De Giorgi iteration-based approach for the establishment of ISS properties for Burgers' equation with boundary and in-domain disturbances, IEEE Trans. Automat. Control, 64 (2019), pp. 3476--3483.
240.
J. Zheng and G. Zhu, A Weak Maximum Principle-Based Approach for Input-to-State Stability Analysis of Nonlinear Parabolic PDEs with Boundary Disturbances, preprint, https://arxiv.org/abs/1908.00335, 2019.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 529 - 614
ISSN (online): 1095-7200

History

Submitted: 3 October 2019
Accepted: 2 March 2020
Published online: 6 August 2020

MSC codes

  1. infinite-dimensional systems
  2. input-to-state stability
  3. Lyapunov functions
  4. partial differential equations
  5. robustness
  6. robust control

MSC codes

  1. 34H05
  2. 35Q93
  3. 37B25
  4. 37L15
  5. 93A15
  6. 93B52
  7. 93C10
  8. 93C25
  9. 93D05
  10. 93D09

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : MI 1886/2-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media