Abstract

This paper is devoted to the theoretical and numerical study of an optimal design problem in high-temperature superconductivity (HTS). The shape optimization problem is to find an optimal superconductor shape minimizes a certain cost functional under a given target on the electric field over a specific domain of interest. For the governing PDE-model, we consider an elliptic curl-curl variational inequality (VI) of the second kind with an L1-type nonlinearity. In particular, the nonsmooth VI character and the involved H(curl)-structure make the corresponding shape sensitivity analysis challenging. To tackle the nonsmoothness, a penalized dual VI formulation is proposed, leading to the Gateaux differentiability of the corresponding dual variable mapping. This property allows us to derive the distributed shape derivative of the cost functional through rigorous shape calculus on the basis of the averaged adjoint method. The developed shape derivative turns out to be uniformly stable with respect to the penalization parameter, and strong convergence of the penalized problem is guaranteed. Based on the achieved theoretical findings, we propose three-dimensional numerical solutions, realized using a level set algorithm and a Newton method with the Nédélec edge element discretization. Numerical results indicate a favorable and efficient performance of the proposed approach for a specific HTS application in superconducting shielding.

Keywords

  1. shape optimization
  2. high-temperature superconductivity
  3. Maxwell variational inequality
  4. Bean's critical-state model
  5. superconducting shielding
  6. level set method

MSC codes

  1. 35J86
  2. 35Q93
  3. 35Q60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Allaire, F. Jouve, and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194 (2004), pp. 363--393, https://doi.org/10.1016/j.jcp.2003.09.032.
2.
V. Barbu and A. Friedman, Optimal design of domains with free-boundary problems, SIAM J. Control Optim., 29 (1991), pp. 623--637, https://doi.org/10.1137/0329035.
3.
J. W. Barrett and L. Prigozhin, Sandpiles and superconductors: Nonconforming linear finite element approximations for mixed formulations of quasi-variational inequalities, IMA J. Numer. Anal., 35 (2015), pp. 1--38.
4.
A. Bossavit, Numerical modelling of superconductors in three dimensions: A model and a finite element method, IEEE Trans. Magnetics, 30 (1994), pp. 3363--3366.
5.
J. Céa, Conception optimale ou identification de formes: Calcul rapide de la dérivée directionnelle de la fonction coût, RAIRO Modél. Math. Anal. Numér., 20 (1986), pp. 371--402, https://doi.org/10.1051/m2an/1986200303711.
6.
J. De Los Reyes, Optimal control of a class of variational inequalities of the second kind, SIAM J. Control Optim., 49 (2011), pp. 1629--1658, https://doi.org/10.1137/090764438.
7.
M. Delfour and J. Zolésio, Shapes and Geometries, 2nd ed., SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9780898719826.
8.
Z. Denkowski and S. Migórski, Optimal shape design for elliptic hemivariational inequalities in nonlinear elasticity, in Variational Calculus, Optimal Control, and Applications, Internat. Ser. Numer. Math. 124, Birkhäuser, Basel, 1998, pp. 31--40.
9.
Z. Denkowski and S. Migórski, Optimal shape design problems for a class of systems described by hemivariational inequalities, J. Global Optim., 12 (1998), pp. 37--59, https://doi.org/10.1023/A:1008299801203.
10.
C. M. Elliott and Y. Kashima, A finite-element analysis of critical-state models for type-II superconductivity in 3D, IMA J. Numer. Anal., 27 (2007), pp. 293--331.
11.
G. Frémiot, W. Horn, A. Laurain, M. Rao, and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains, Dissertationes Math., 462 (2009) https://doi.org/10.4064/dm462-0-1.
12.
B. Führ, V. Schulz, and K. Welker, Shape optimization for interface identification with obstacle problems, Vietnam J. Math., 46 (2018), pp. 967--985, https://doi.org/10.1007/s10013-018-0312-0.
13.
P. Fulmański, A. Laurain, J.-F. Scheid, and J. Sokołowski, A level set method in shape and topology optimization for variational inequalities, Int. J. Appl. Math. Comput. Sci., 17 (2007), pp. 413--430, https://doi.org/10.2478/v10006-007-0034-z.
14.
C. Heinemann and K. Sturm, Shape optimization for a class of semilinear variational inequalities with applications to damage models, SIAM J. Math. Anal., 48 (2016), pp. 3579--3617, https://doi.org/10.1137/16M1057759.
15.
A. Henrot and M. Pierre, Shape Variation and Optimization, EMS Tracts Math. 28, European Mathematical Society, Zürich, 2018, https://doi.org/10.4171/178.
16.
M. Hintermüller and A. Laurain, Optimal shape design subject to elliptic variational inequalities, SIAM J. Control Optim., 49 (2011), pp. 1015--1047, https://doi.org/10.1137/080745134.
17.
M. Hintermüller, A. Laurain, and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model, Inverse Problems, 31 (2015), 065006, https://doi.org/10.1088/0266-5611/31/6/065006.
18.
K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 517--539, https://doi.org/10.1051/cocv:2008002.
19.
F. Jochmann, The semistatic limit for Maxwell's equations in an exterior domain, Comm. Partial Differential Equations, 23 (1998), pp. 2035--2076, https://doi.org/10.1080/03605309808821410.
20.
H. Kasumba and K. Kunisch, On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable, Control Cybernet., 40 (2011), pp. 989--1017.
21.
M. Kočvara and J. V. Outrata, Shape optimization of elastoplastic bodies governed by variational inequalities, in Boundary Control and Variation (Sophia Antipolis, 1992), Lecture Notes Pure Appl. Math. 163, Marcel Dekker, New York, 1994, pp. 261--271.
22.
J. Kvitkovic, D. Davis, M. Zhang, and S. Pamidi, Magnetic shielding characteristics of second generation high temperature superconductors at variable temperatures obtained by cryogenic helium gas circulation, IEEE Trans. Appl. Supercond., 25 (2015), https://doi.org/10.1109/TASC.2014.2368515.
23.
A. Laurain, Analyzing smooth and singular domain perturbations in level set methods, SIAM J. Math. Anal., 50 (2018), pp. 4327--4370, https://doi.org/10.1137/17M1118956.
24.
A. Laurain, A level set-based structural optimization code using FEniCS, Struct. Multidiscip. Optim., 58 (2018), pp. 1311--1334, https://doi.org/10.1007/s00158-018-1950-2.
25.
A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and applications, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1241--1267, https://doi.org/10.1051/m2an/2015075.
26.
A. Laurain, M. Winckler, and I. Yousept, SPP1962 Preprint Server, https://spp1962.wias-berlin.de/preprints.php (14 October 2019).
27.
J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493--519, https://doi.org/10.1002/cpa.3160200302.
28.
W. B. Liu and J. E. Rubio, Optimal shape design for systems governed by variational inequalities. I. Existence theory for the elliptic case, J. Optim. Theory Appl., 69 (1991), pp. 351--371, https://doi.org/10.1007/BF00940649.
29.
A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, Springer, New York, 2012, https://doi.org/10.1007/978-3-642-23099-8.
30.
D. Luft, V. Schulz, and K. Welker, Efficient techniques for shape optimization with variational inequalities using adjoints, SIAM J. Optim., 30 (2020), pp. 1922--1953, https://doi.org/10.1137/19M1257226.
31.
P. Monk, Finite Element Methods for Maxwell's Equations, Numer. Anal. Sci. Comput., Clarendon Press, Oxford, 2003.
32.
A. Myśliński, Domain optimization for unilateral problems by an embedding domain method, in Shape Optimization and Optimal Design (Cambridge, 1999), Lect. Pure Appl. Math. 216, Marcel Dekker, New York, 2001, pp. 355--370.
33.
J.-C. Nédélec, Mixed finite elements in ${R}^{3}$, Numer. Math., 35 (1980), pp. 315--341.
34.
P. Neittaanmäki, J. Sokołowski, and J. P. Zolesio, Optimization of the domain in elliptic variational inequalities, Appl. Math. Optim., 18 (1988), pp. 85--98, https://doi.org/10.1007/BF01443616.
35.
M. Ngom, A. Diene, L. Idrissa, and D. Seck, Shape and topological optimization in an exact controllability problem, Appl. Math. Sci., 12 (2018), pp. 849--869, https://doi.org/10.12988/ams.2018.79277.
36.
S. Nicaise, Exact boundary controllability of Maxwell's equations in heterogeneous media and an application to an inverse source problem, SIAM J. Control Optim., 38 (2000), pp. 1145--1170, https://doi.org/10.1137/S0363012998344373.
37.
O. Pantz, Sensibilité de l'équation de la chaleur aux sauts de conductivité, C. R. Math. Acad. Sci. Paris, 341 (2005), pp. 333--337, https://doi.org/10.1016/j.crma.2005.07.005.
38.
L. Prigozhin, On the Bean critical-state model in superconductivity, European J. Appl. Math., 7 (1996), pp. 237--247.
39.
Y. Privat, E. Trélat, and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincare Anal. Non Linéaire, 30 (2013), pp. 1097--1126, https://doi.org/10.1016/j.anihpc.2012.11.005.
40.
L. Qi, Transposes, L-eigenvalues and Invariants of Third Order Tensors, https://arxiv.org/abs/1704.01327, 2017.
41.
T. Roubícek, Nonlinear Partial Differential Equations with Applications, Internat. Ser. Numer. Math., Springer, New York, 2013.
42.
J. Sokołowski and A. Żochowski, Modelling of topological derivatives for contact problems, Numer. Math., 102 (2005), pp. 145--179, https://doi.org/10.1007/s00211-005-0635-0.
43.
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Ser. Comput. Math. 16, Springer, New York, 1992.
44.
K. Sturm, Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control Optim., 53 (2015), pp. 2017--2039, https://doi.org/10.1137/130930807.
45.
R. Trémolières, J. L. Lions, and R. Glowinski, Numerical Analysis of Variational Inequalities, Stud. Math. Appl., Elsevier Science, New York, 1981.
46.
F. Tröltzsch and I. Yousept, PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 709--729, https://doi.org/10.1051/m2an/2011052.
47.
M. Winckler and I. Yousept, Fully discrete scheme for Bean's critical-state model with temperature effects in superconductivity, SIAM J. Numer. Anal., 57 (2019), pp. 2685--2706, https://doi.org/10.1137/18M1231407.
48.
M. Winckler, I. Yousept, and J. Zou, Adaptive edge element approximation for H(curl) elliptic variational inequalities of second kind, SIAM J. Numer. Anal., 58 (2020), pp. 1941--1964, https://doi.org/10.1137/19M1281320.
49.
I. Yousept, Optimal control of Maxwell's equations with regularized state constraints, Comput. Optim. Appl., 52 (2012), pp. 559--581, https://doi.org/10.1007/s10589-011-9422-2.
50.
I. Yousept, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems, SIAM J. Control Optim., 51 (2013), pp. 3624--3651, https://doi.org/10.1137/120904299.
51.
I. Yousept, Hyperbolic Maxwell variational inequalities for Bean's critical-state model in type-II superconductivity, SIAM J. Numer. Anal., 55 (2017), pp. 2444--2464, https://doi.org/10.1137/16M1091939.
52.
I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II superconductivity, SIAM J. Control Optim., 55 (2017), pp. 2305--2332, https://doi.org/10.1137/16M1074229.
53.
I. Yousept, Hyperbolic Maxwell variational inequalities of the second kind, ESAIM Control Optim. Calc. Var., 26 (2020), 34, https://doi.org/10.1051/cocv/2019015.
54.
I. Yousept, Well-posedness theory for electromagnetic obstacle problems, J. Differential Equations, 269 (2020), pp. 8855--8881, https://doi.org/10.1016/j.jde.2020.05.009.

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 2247 - 2272
ISSN (online): 1095-7138

History

Submitted: 18 October 2019
Accepted: 10 December 2020
Published online: 21 June 2021

Keywords

  1. shape optimization
  2. high-temperature superconductivity
  3. Maxwell variational inequality
  4. Bean's critical-state model
  5. superconducting shielding
  6. level set method

MSC codes

  1. 35J86
  2. 35Q93
  3. 35Q60

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : YO 159/2-2
Fundação de Amparo à Pesquisa do Estado de São Paulo https://doi.org/10.13039/501100001807 : 2016/24776-6
Conselho Nacional de Desenvolvimento Científico e Tecnológico https://doi.org/10.13039/501100003593 : 408175/2018-4, 302493/2015-8, 304258/2018-0

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media