Convolutional Neural Networks in Phase Space and Inverse Problems
Abstract
We study inverse problems consisting of determining medium properties using the responses to probing waves from the machine learning point of view. Based on the analysis of propagation of waves and their nonlinear interactions, we construct a deep convolutional neural network to reconstruct the coefficients of nonlinear wave equations that model the medium properties. Furthermore, for given approximation accuracy, we obtain the depth and number of units of the network and their quantitative dependence on the complexity of the medium.
1. M. Beals, Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems, Progr. Math. 3, Birkhäuser Boston, Boston, MA, 1989.
2. , Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , Ann. Sci. École Norm. Sup. (4) , 14 ( 1981 ), pp. 209 -- 246 .
3. T. A. Bubba, M. Galinier, M. Lassas, M. Prato, L. Ratti, and S. Siltanen, Deep Neural Networks for Inverse Problems with Pseudodifferential Operators: An Application to Limited-Angle Tomography, preprint, https://arxiv.org/abs/2006.01620, 2020.
4. R. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathématique de France, Paris, France, 1978.
5. , Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics , Arch. Ration. Mech. Anal. , 87 ( 1985 ), pp. 267 -- 292 .
6. . van der Hilst, Seismic imaging with the generalized Radon transform: A curvelet transform perspective , Inverse Problems , 25 ( 2009 ), 025005 .
7. , Diffraction from conormal singularities , Ann. Sci. Éc. Norm. Supér. (4) , 48 ( 2015 ), pp. 351 -- 408 .
8. , Nonlinear interaction of waves in elastodynamics and an inverse problem , Math. Ann. , 376 ( 2020 ), pp. 765 -- 795 .
9. J. J. Duistermaat, Fourier Integral Operators, Progr. Math. 130, Birkhäuser Boston, Boston, MA, 1996.
10. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, MA, 2016.
11. , Multilayer feedforward networks are universal approximators , Neural Networks , 2 ( 1989 ), pp. 359 -- 366 .
12. , Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , Neural Networks , 3 ( 1990 ), pp. 551 -- 560 .
13. L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators, Classics Math., Springer-Verlag, Berlin, 2009.
14. , Estimates for singular Radon transforms and pseudodifferential operators with singular symbols , J. Funct. Anal. , 89 ( 1990 ), pp. 202 -- 232 .
15. A. Kachalov, M. Lassas, and Y. Kurylev, Inverse Boundary Spectral Problems, Chapman and Hall/CRC, Boca Raton, FL, 2001.
16. K. Kothari, I. Dokmanić, and M. de Hoop, Learning the Geometry of Wave-Based Imaging, preprint, https://arxiv.org/abs/2006.05854v1, 2020.
17. , Inverse problems for Lorentzian manifolds and nonlinear hyperbolic equations , Invent. Math. , 212 ( 2018 ), pp. 781 -- 857 .
18. Y. Kurylev, M. Lassas, and G. Uhlmann, Inverse Problems in Spacetime I: Inverse Problems for Einstein Equations, extended preprint, https://arxiv.org/abs/1405.4503, 2014.
19. , Non-linear interaction of elastic waves in rocks , Geophys. J. Internat. , 194 ( 2013 ), pp. 1920 -- 1940 .
20. M. Lassas, T. Liimatainen, L. Potenciano-Machado, and T. Tyni, Uniqueness and Stability of an Inverse Problem for a Semi-Linear Wave Equation, preprint, https://arxiv.org/abs/2006.13193, 2020.
21. , Inverse problems for semilinear wave equations on Lorentzian manifolds , Comm. Math. Phys. , 360 ( 2018 ), pp. 555 -- 609 .
22. M. Lassas, G. Uhlmann, and Y. Wang, Determination of Vacuum Space-Times from the Einstein-Maxwell Equations, preprint, https://arxiv.org/abs/1703.10704, 2017.
23. , Deep learning , Nature , 521 ( 2015 ), 436 .
24. , Multilayer feedforward networks with a non-polynomial activation function can approximate any function , Neural Networks , 6 ( 1993 ), pp. 861 -- 867 .
25. Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys., 399 (2019), 108925.
26. L. Lu, P. Jin, and G. E. Karniadakis, DeepONet: Learning Nonlinear Operators for Identifying Differential Equations Based on the Universal Approximation Theorem of Operators, preprint, https://arxiv.org/abs/1910.03193, 2019.
27. , Group invariant scattering , Comm. Pure Appl. Math. , 65 ( 2012 ), pp. 1331 -- 1398 .
28. , Understanding deep convolutional networks , Phil. Trans. R. Soc. A , 374 ( 2016 ), 20150203 .
29. , Interaction of nonlinear progressing waves for semilinear wave equations , Ann. of Math. (2) , 121 ( 1985 ), pp. 187 -- 213 .
30. , Lagrangian intersection and the Cauchy problem , Comm. Pure Appl. Math. , 32 ( 1979 ), pp. 483 -- 519 .
31. , An inverse boundary value problem for a nonlinear wave equation , Inverse Probl. Imaging , 2 ( 2008 ), pp. 121 -- 131 .
32. G. Nakamura and M. Vashisth, Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations, preprint, https://arxiv.org/abs/1712.09945, 2017.
33. , Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , J. Comput. Phys. , 378 ( 2019 ), pp. 686 -- 707 .
34. , Singularities produced by the nonlinear interaction of three progressing waves; examples , Comm. Partial Differential Equations , 7 ( 1982 ), pp. 1117 -- 1133 .
35. , Deep neural networks motivated by partial differential equations , J. Math. Imaging Vision , 62 ( 2020 ), pp. 352 -- 364 .
36. M. E. Taylor, Pseudodifferential Operators and Nonlinear Partial Differential Equations, Birkhäuser Boston, Boston, MA, 1991.
37. M. E. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, 2nd ed., Appl. Math. Sci. 116, Springer, New York, 2011.
38. , Determination of space-time structures from gravitational perturbations , Comm. Pure Appl. Math. , 73 ( 2020 ), pp. 1315 -- 1367 .