Abstract

The solution of matrices with a $2\times 2$ block structure arises in numerous areas of computational mathematics, such as PDE discretizations based on mixed-finite element methods, constrained optimization problems, or the implicit or steady state treatment of any system of PDEs with multiple dependent variables. Often, these systems are solved iteratively using Krylov methods and some form of block preconditioner. Under the assumption that one diagonal block is inverted exactly, this paper proves a direct equivalence between convergence of $2\times2$ block preconditioned Krylov or fixed-point iterations to a given tolerance, with convergence of the underlying preconditioned Schur-complement problem. In particular, results indicate that an effective Schur-complement preconditioner is a necessary and sufficient condition for rapid convergence of $2\times 2$ block-preconditioned GMRES, for arbitrary relative-residual stopping tolerances. A number of corollaries and related results give new insight into block preconditioning, such as the fact that approximate block-LDU or symmetric block-triangular preconditioners offer minimal reduction in iteration over block-triangular preconditioners, despite the additional computational cost. Theoretical results are verified numerically on a nonsymmetric steady linearized Navier--Stokes discretization, which also demonstrate that theory based on the assumption of an exact inverse of one diagonal block extends well to the more practical setting of inexact inverses.

Keywords

  1. Krylov
  2. GMRES
  3. block preconditioning

MSC codes

  1. 65F08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient methods, SIAM J. Numer. Anal., 27 (1990), pp. 1542--1568.
2.
O. Axelsson and M. Neytcheva, Eigenvalue estimates for preconditioned saddle point matrices, Numer. Linear Algebra Appl., 13 (2006), pp. 339--360, https://doi.org/10.1002/nla.469.
3.
Z. Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comp., 75 (2006), pp. 791--815.
4.
Z. Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1710--1724.
5.
S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Technical report ANL-95/11-Revision 3.7, Argonne National Laboratory, 2016, http://www.mcs.anl.gov/petsc.
6.
M. Benzi and M. A. Olshanskii, Field-of-values convergence analysis of augmented Lagrangian preconditioners for the linearized Navier--Stokes problem, SIAM J. Numer. Anal., 49 (2011), pp. 770--788.
7.
M. Benzi, M. A. Olshanskii, and Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier--Stokes equations, Internat. J. Numer. Methods Fluids, 66 (2011), pp. 486--508.
8.
F. Brezzi, L. D. Marini, and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), pp. 1893--1903.
9.
E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, Stabilization and scalable block preconditioning for the Navier--Stokes equations, J. Comput. Phys., 231 (2012), pp. 345--363.
10.
V. A. Dobrev, T. V. Kolev, et al., MFEM: Modular Finite Element Methods, http://mfem.org, 2018.
11.
H. S. Dollar, N. I. Gould, M. Stoll, and A. J. Wathen, Preconditioning saddle-point systems with applications in optimization, SIAM J. Sci. Comput., 32 (2010), pp. 249--270.
12.
H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier--Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33--46.
13.
R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Proceedings of the European Conference on Parallel Processing, Lecture Notes in Comput. Sci. 2331, 2002, pp. 632--641.
14.
B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 38 (1998), pp. 527--543.
15.
A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465--469.
16.
I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM J. Sci. Comput., 23 (2001), pp. 1050--1051.
17.
A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput., 19 (1998), pp. 172--184.
18.
A. Klawonn and G. Starke, Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis, Numer. Math., 81 (1999), pp. 577--594.
19.
P. Krzyzanowski, On block preconditioners for nonsymmetric saddle point problems, SIAM J. Sci. Comput., 23 (2001), pp. 157--169.
20.
D. Loghin and A. Wathen, Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25 (2004), pp. 2029--2049.
21.
Y. Ma, K. Hu, X. Hu, and J. Xu, Robust preconditioners for incompressible mhd models, J. Comput. Phys., 316 (2016), pp. 721--746.
22.
T. A. Manteuffel, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., (1977), pp. 307--327.
23.
T. A. Manteuffel, S. Munzenmaier, J. Ruge, and B. S. Southworth, Nonsymmetric reduction-based algebraic multigrid, SIAM J. Sci. Comput., 41 (2019), pp. S242--S268.
24.
T. A. Manteuffel, J. Ruge, and B. S. Southworth, Nonsymmetric algebraic multigrid based on local approximate ideal restriction ($\ell$AIR), SIAM J. Sci. Comput., 40 (2018), pp. A4105--A4130.
25.
E. McDonald, S. Hon, J. Pestana, and A. J. Wathen, Preconditioning for nonsymmetry and time-dependence, in Domain Decomposition Methods in Science and Engineering XXIII, Springer, Cham, 2017, pp. 81--91.
26.
M. F. Murphy, G. H. Golub, and A. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969--1972.
27.
Y. Notay, A new analysis of block preconditioners for saddle point problems, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 143--173.
28.
J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2011), pp. 816--829.
29.
J. Pestana, On the eigenvalues and eigenvectors of block triangular preconditioned block matrices, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 517--525.
30.
J. Pestana and A. J. Wathen, Combination preconditioning of saddle point systems for positive definiteness, Numer. Linear Algebra Appl., 20 (2012), pp. 785--808.
31.
T. Rees and M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 17 (2010), pp. 977--996.
32.
S. Rhebergen and G. N. Wells, A hybridizable discontinuous Galerkin method for the Navier--Stokes equations with pointwise divergence-free velocity field, J. Sci. Comput., 76 (2018), pp. 1484--1501.
33.
Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461--469.
34.
J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 752--773.
35.
C. Siefert and E. de Sturler, Preconditioners for generalized saddle-point problems, SIAM J. Numer. Anal., 44 (2006), pp. 1275--1296.
36.
D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems part II: Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352--1367, https://doi.org/10.1137/0731070.
37.
A. A. Sivas, B. S. Southworth, and S. Rhebergen, A Re-robust preconditioner for an HDG discretization of Navier--Stokes, in preparation.
38.
B. S. Southworth, M. Holec, and T. S. Haut, Diffusion synthetic acceleration for heterogeneous domains, compatible with voids, Nuclear Science and Engineering, to appear.
39.
B. S. Southworth and S. S. Olivier, A Note on $2\times 2$ Block-Diagonal Preconditioning, preprint, https://arxiv.org/abs/2001.00711, 2020.
40.
J. D. Tebbens and G. Meurant, Prescribing the behavior of early terminating GMRES and Arnoldi iterations, Numer. Algorithms, 65 (2013), pp. 69--90.
41.
A. Wathen, Preconditioning and convergence in the right norm, Int. J. Comput. Math., 84 (2007), pp. 1199--1209.
42.
J. A. White and R. I. Borja, Block-preconditioned Newton--Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15 (2011), 647.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 871 - 900
ISSN (online): 1095-7162

History

Submitted: 8 November 2019
Accepted: 25 March 2020
Published online: 11 June 2020

Keywords

  1. Krylov
  2. GMRES
  3. block preconditioning

MSC codes

  1. 65F08

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038 : RGPIN-05606-2015, RGPAS-478018-2015
U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-NA0002376

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media