Abstract

We investigate how damping the lowest Fourier mode modifies the dynamics of the cubic Szegö equation. We show that there is a nonempty open subset of initial data generating trajectories with high Sobolev norms tending to infinity. In addition, we give a complete picture of this phenomenon on a reduced phase space of dimension $6$. An appendix is devoted to numerical simulations supporting the generalization of this picture to more general initial data.

Keywords

  1. cubic Szegö equation
  2. integrable system
  3. damped equation
  4. Hankel operator
  5. spectral analysis

MSC codes

  1. 35B15
  2. 47B35
  3. 37K15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Bourgain, Problems in Hamiltonian PDEs, Geom. Funct. Anal. (2000), Special Volume, Part I, pp. 32--56.
2.
J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Not., 1996, no. 6, pp. 277--304.
3.
R. Carles and I. Gallagher, Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math. J., 167 (2018), pp. 1761--1801.
4.
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 181 (2010), pp. 39--113.
5.
P. Gérard and S. Grellier, The cubic Szegö equation, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), pp. 761--810.
6.
P. Gérard and S. Grellier, Invariant tori for the cubic Szegö equation, Invent. Math., 187 (2012), pp. 707--754.
7.
P. Gérard and S. Grellier, The cubic Szegö equation and Hankel operators, Astérisque 389, 2017.
8.
P. Gérard and S. Grellier, Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE, 5 (2012), pp. 1139--1155.
9.
P. Gérard, Wave turbulence and complete integrability, in Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Institute Communications 83, P. D. Miller, P. Perry, J.-C. Saut, C. Sulem, eds., Springer, New York, pp. 39--93.
10.
P. Gérard and S. Grellier, A survey of the Szegö equation, Sci. China Math., 62 (2019), pp. 1087--1100.
11.
P. Gérard and A. Pushnitski, Weighted model spaces and Schmidt subspaces of Hankel operators, J. Lond. Math. Soc. (2), https://doi.org/10.1112/jlms.12270.
12.
P. Gérard, E. Lenzmann, O. Pocovnicu, and P. Raphael, A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, 4 (2018), https://doi.org/10.1007/s40818-017-0043-7.
13.
M. Guardia, Growth of Sobolev norms in the cubic nonlinear Schrödinger equation with a convolution potential, Commun. Math. Phys., 329 (2014), pp. 405--434.
14.
M. Guardia, Z. Hani, E. Haus, A. Maspero, and M. Procesi, Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite-gap tori for the 2D cubic NLS equation, J. Eur. Math. Soc. (JEMS), to appear.
15.
M. Guardia, E. Haus, and M. Procesi, Growth of Sobolev norms for the defocusing analytic NLS on $\T ^2$, Adv. Math., 301 (2016), pp. 615--692.
16.
M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), pp. 71--149.
17.
Z. Hani, Long-time strong instability and unbounded orbits for some periodic nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 211 (2014), pp. 929--964.
18.
Z. Hani, B. Pausader, N. Tzvetkov, and N. Visciglia, Modified scattering for the cubic Schrödinger equations on product spaces and applications, Forum Math. Pi, Vol. 3 (2015), https://doi.org/10.1017/fmp.2015.5.
19.
E. Haus and M. Procesi, Growth of Sobolev norms for the quintic NLS on $\T ^2$, Anal. PDE, 8 (2015), pp. 883--922.
20.
V. V. Peller, Hankel Operators and Their Applications, Springer Monogr. Math., Springer-Verlag, New York, 2003.
21.
O. Pocovnicu, Explicit formula for the solution of the Szegö equation on the real line and applications, Discrete Contin. Dyn. Syst., 31 (2011), pp. 607--649.
22.
J. Thirouin, Optimal bounds for the growth of Sobolev norms of solutions of a quadratic Szegö equation, Trans. Amer. Math. Soc., 371 (2019), pp. 3673--3690.
23.
H. Xu, Large time blow up for a perturbation of the cubic Szegö equation, Anal. PDE, 7 (2014), pp. 717--731.
24.
H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z., 286 (2017), pp. 443--489.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4391 - 4420
ISSN (online): 1095-7154

History

Submitted: 12 November 2019
Accepted: 29 June 2020
Published online: 17 September 2020

Keywords

  1. cubic Szegö equation
  2. integrable system
  3. damped equation
  4. Hankel operator
  5. spectral analysis

MSC codes

  1. 35B15
  2. 47B35
  3. 37K15

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.