Abstract

Convergence of Dziuk's fully discrete linearly implicit parametric finite element method for curve shortening flow on the plane still remains open since it was proposed in 1991, though the corresponding semidiscrete method with piecewise linear finite elements was proved to be convergent in 1994, while the error analysis for the semidiscrete method cannot be directly extended to higher-order finite elements or full discretization. In this paper, we present an error estimate of Dziuk's fully discrete linearly implicit parametric finite element method for curve shortening flow on the plane for finite elements of polynomial degree $r\ge 3$. Numerical experiments are provided to support and complement the theoretical convergence result.

Keywords

  1. curve shortening flow
  2. parametric finite element method
  3. linearly implicit
  4. convergence
  5. error estimate

MSC codes

  1. 65M15
  2. 65M60
  3. 49M10
  4. 35K65

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. W. Barrett, K. Deckelnick, and R. Nürnberg, A Finite Element Error Analysis for Axisymmetric Mean Curvature Flow, preprint, https://arxiv.org/abs/1911.05398, 2019.
2.
J. W. Barrett, K. Deckelnick, and V. Styles, Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal., 55 (2017), pp. 1080--1100, https://doi.org/10.1137/16M1083682.
3.
J. W. Barrett, H. Garcke, and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in $\R^3$, J. Comput. Phys., 227 (2008), pp. 4281--4307.
4.
J. W. Barrett, H. Garcke, and R. Nürnberg, Numerical approximation of gradient flows for closed curves in $\mathbb{R}^d$, IMA J. Numer. Anal., 30 (2010), pp. 4--60.
5.
K. Deckelnick and G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow, Numer. Math., 72 (1995), pp. 197--222.
6.
K. Deckelnick and G. Dziuk, On the approximation of the curve shortening flow, in Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994), Pitman Res. Notes Math. Ser. 326, Longman Sci. Tech., Harlow, UK, 1995, pp. 100--108.
7.
K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound., 2 (2000), pp. 341--359.
8.
G. Dziuk, An algorithm for evolutionary surfaces, Numer. Math., 58 (1991), pp. 603--611.
9.
G. Dziuk, Convergence of a semi-discrete scheme for the curve shortening flow, Math. Models Methods Appl. Sci., 4 (1994), pp. 589--606.
10.
G. Dziuk, Discrete anisotropic curve shortening flow, SIAM J. Numer. Anal., 36 (1999), pp. 1808--1830, https://doi.org/10.1137/S0036142998337533.
11.
C. M. Elliott and H. Fritz, On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37 (2017), pp. 543--603.
12.
B. Kovács, B. Li, and C. Lubich, A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math., 143 (2019), pp. 797--853, https://doi.org/10.1007/s00211-019-01074-2.
13.
C. Mantegazza, Lecture Notes on Mean Curvature Flow, Progr. Math. 290, corrected printing, Birkhäuser/Springer, Basel, 2012.
14.
P. Pozzi, Anisotropic curve shortening flow in higher codimension, Math. Methods Appl. Sci., 30 (2007), pp. 1243--1281.
15.
R. Rusu, Numerische Analysis für den Krümmungsfluß und den Willmorefluß, Ph.D. thesis, University of Freiburg, Freiburg, Germany, 2006.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2315 - 2333
ISSN (online): 1095-7170

History

Submitted: 9 December 2019
Accepted: 26 May 2020
Published online: 13 August 2020

Keywords

  1. curve shortening flow
  2. parametric finite element method
  3. linearly implicit
  4. convergence
  5. error estimate

MSC codes

  1. 65M15
  2. 65M60
  3. 49M10
  4. 35K65

Authors

Affiliations

Funding Information

Hong Kong Polytechnic University https://doi.org/10.13039/501100004377 : ZZKQ

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media