Abstract

Given a graph $G$, a $q$-open neighborhood conflict-free coloring or $q$-ONCF-coloring is a vertex coloring $c\colon V(G) \rightarrow \{1,2,\ldots,q\}$ such that for each vertex $v \in V(G)$ there is a vertex in $N(v)$ that is uniquely colored from the rest of the vertices in $N(v)$. When we replace $N(v)$ by the closed neighborhood $N[v]$, then we call such a coloring a $q$-closed neighborhood conflict-free coloring or simply $q$-CNCF-coloring. In this paper, we study the NP-hard decision questions of whether for a constant $q$ an input graph has a $q$-ONCF-coloring or a $q$-CNCF-coloring. We will study these two problems in the parameterized setting. First of all, we study running time bounds on fixed-parameter tractable algorithms for these problems when parameterized by treewidth. We improve the existing upper bounds, and also provide lower bounds on the running time under the exponential time hypothesis and the strong exponential time hypothesis. Second, we study the kernelization complexity of both problems, using vertex cover as the parameter. We show that both $(q \geq 2)$-ONCF-coloring and $(q \geq 3)$-CNCF-coloring cannot have polynomial kernels when parameterized by the size of a vertex cover unless ${\mathsf{NP \subseteq\- coNP/poly}}$. On the other hand, we obtain a polynomial kernel for 2-CNCF-coloring parameterized by vertex cover. We conclude the study with some combinatorial results. Denote $\chi_{ON}(G)$ and $\chi_{CN}(G)$ to be the minimum number of colors required to ONCF-color and CNCF-color $G$, respectively. Upper bounds on $\chi_{CN}(G)$ with respect to structural parameters like minimum vertex cover size, minimum feedback vertex set size, and treewidth are known. To the best of our knowledge only an upper bound on $\chi_{ON}(G)$ with respect to minimum vertex cover size was known. We provide tight bounds for $\chi_{ON}(G)$ with respect to minimum vertex cover size. Also, we provide the first upper bounds on $\chi_{ON}(G)$ with respect to minimum feedback vertex set size and treewidth.

Keywords

  1. conflict-free coloring
  2. kernelization
  3. fixed-parameter tractability
  4. combinatorial bounds

MSC codes

  1. 68Q25
  2. 05C15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich, and C. Scheffer, Conflict-free coloring of graphs, SIAM J. Discrete Math., 32 (2018), pp. 2675--2702, https://doi.org/10.1137/17M1146579.
2.
D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray, Conflict-free coloring for rectangle ranges using $O(n^{.382})$ colors, Discrete Comput. Geom., 48 (2012), pp. 39--52, https://doi.org/10.1007/s00454-012-9425-5.
3.
H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, Kernelization lower bounds by cross-composition, SIAM J. Discrete Math., 28 (2014), pp. 277--305, https://doi.org/10.1137/120880240.
4.
H. L. Bodlaender, S. Thomassé, and A. Yeo, Kernel bounds for disjoint cycles and disjoint paths, Theoret. Comput. Sci., 412 (2011), pp. 4570--4578, https://doi.org/10.1016/j.tcs.2011.04.039.
5.
P. Cheilaris, Conflict-free Coloring, PhD thesis, City University of New York, New York, 2009.
6.
M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Cham, Switzerland, 2015, https://doi.org/10.1007/978-3-319-21275-3.
7.
A. Darmann and J. Döcker, On a simple hard variant of not-all-equal 3-sat, Theoret. Comput. Sci., 815 (2020), pp. 147--152, https://doi.org/https://doi.org/10.1016/j.tcs.2020.02.010.
8.
G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput., 33 (2003), pp. 94--136, https://doi.org/10.1137/S0097539702431840.
9.
F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Springer, Berlin, 2010.
10.
M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, Freeman, New York, 1990.
11.
L. Gargano and A. A. Rescigno, Complexity of conflict-free colorings of graphs, Theoret. Comput. Sci., 566 (2015), pp. 39--49, https://doi.org/10.1016/j.tcs.2014.11.029.
12.
R. Glebov, T. Szabó, and G. Tardos, Conflict-free colouring of graphs, Combin. Probab. Comput., 23 (2014), pp. 434--448.
13.
S. Har-Peled and S. Smorodinsky, Conflict-free coloring of points and simple regions in the plane, Discrete Comput. Geom., 34 (2005), pp. 47--70, https://doi.org/10.1007/s00454-005-1162-6.
14.
B. M. P. Jansen and S. Kratsch, Data reduction for graph coloring problems, Inform. and Comput., 231 (2013), pp. 70--88, https://doi.org/10.1016/j.ic.2013.08.005.
15.
B. M. P. Jansen and A. Pieterse, Optimal data reduction for graph coloring using low-degree polynomials, Algorithmica, 81 (2019), pp. 3865--3889.
16.
B. M. P. Jansen and A. Pieterse, Optimal sparsification for some binary CSPs using low-degree polynomials, ACM Trans Comput. Theory, 11 (2019), 28.
17.
D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs of bounded treewidth are probably optimal, ACM Trans. Algorithms, 14 (2018), 13, https://doi.org/10.1145/3170442.
18.
J. Pach and G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput., 18 (2009), pp. 819--834, https://doi.org/10.1017/S0963548309990290.
19.
T. J. Schaefer, The complexity of satisfiability problems, in Proc. 10th STOC, ACM, New York, 1978, pp. 216--226, https://doi.org/10.1145/800133.804350.
20.
S. Smorodinsky, Combinatorial Problems in Computational Geometry, PhD thesis, School of Computer Science, Tel Aviv University, Tel Aviv, Israel, 2003.
21.
S. Smorodinsky, Conflict-Free Coloring and its Applications, Springer, Berlin, 2013.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 2003 - 2038
ISSN (online): 1095-7146

History

Submitted: 16 December 2019
Accepted: 5 May 2021
Published online: 2 September 2021

Keywords

  1. conflict-free coloring
  2. kernelization
  3. fixed-parameter tractability
  4. combinatorial bounds

MSC codes

  1. 68Q25
  2. 05C15

Authors

Affiliations

Funding Information

Nederlandse Organisatie voor Wetenschappelijk Onderzoek https://doi.org/10.13039/501100003246

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media