Abstract

In this paper, we propose a fast block $\alpha$-circulant preconditioner for solving the nonsymmetric linear system arising from an all-at-once implicit discretization scheme in time for the wave equation. As a generalization of the well-known block circulant preconditioning technique, the proposed block $\alpha$-circulant preconditioner can also be efficiently inverted in a parallel-in-time manner. The complex eigenvalues of the preconditioned matrix are fully derived in explicit expression and its diagonalizability is also shown. Furthermore, a mesh-independent convergence rate of the preconditioned GMRES method is derived under certain conditions. Building upon the proposed preconditioner, two stationary iterative methods with uniform asymptotic convergence rates were also presented. The extension of our preconditioner within a simplified Newton iteration to the nonlinear wave equation is also discussed. Both linear and nonlinear numerical examples are given to illustrate the promising performance of our proposed block $\alpha$-circulant preconditioner and also validate our theoretical results on convergence analysis.

Keywords

  1. all-at-once scheme
  2. wave equations
  3. $\alpha$-circulant preconditioner
  4. parallel-in-time (PinT)
  5. diagonalization

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. Bertaccini and M. K. Ng, Block $omega$-circulant preconditioners for the systems of differential equations, Calcolo, 40 (2003), pp. 71--90, https://doi.org/10.1007/s100920300004.
2.
A. Bespalov, L. Rocchi, and D. Silvester, T-IFISS: a toolbox for adaptive FEM computation, Comput. Math. Appl., to appear.
3.
D. A. Bini, G. Latouche, and B. Meini, Numerical Methods for Structured Markov Chains, Oxford University Press, New York, 2005, https://doi.org/10.1093/acprof:oso/9780198527688.001.0001.
4.
B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal., 7 (1970), pp. 627--656, https://doi.org/10.1137/0707049.
5.
R. Chan and X. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007, https://doi.org/10.1137/1.9780898718850.
6.
F. Chen, J. S. Hesthaven, and X. Zhu, On the use of reduced basis methods to accelerate and stabilize the parareal method, in Reduced Order Methods for Modeling and Computational Reduction, MS&A. Model. Simul. Appl. 9, Springer, Cham, 2014, pp. 187--214.
7.
P.-H. Cocquet and M. J. Gander, How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid?, SIAM J. Sci. Comput., 39 (2017), pp. A438--A478, https://doi.org/10.1137/15m102085x.
8.
G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation, Springer, Berlin, Heidelberg, 2001, https://books.google.com/books?id=SSmjr45ULnMC.
9.
X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A52--A78, https://doi.org/10.1137/110861002.
10.
D. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, Springer New York, 2013, https://books.google.com/books?id=QhIhswEACAAJ.
11.
A. Eghbal, A. G. Gerber, and E. Aubanel, Acceleration of unsteady hydrodynamic simulations using the parareal algorithm, J. Comput. Sci., 19 (2017), pp. 57--76.
12.
S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345--357, https://doi.org/10.1137/0720023.
13.
H. Elman, A. Ramage, and D. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33 (2007), pp. 2--14.
14.
H. Elman, A. Ramage, and D. Silvester, IFISS: A computational laboratory for investigating incompressible flow problems, SIAM Rev., 56 (2014), pp. 261--273, https://doi.org/10.1137/120891393.
15.
H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2014.
16.
M. Embree, How Descriptive are GMRES Convergence Bounds?, University of Oxford Computing Lab, Oxford, UK, NA Report 99/08, 1999. https://ora.ox.ac.uk/objects/uuid:8ca2d383-4d7d-4e21-805c-98e16537d3d3.
17.
Z.-W. Fang, H.-W. Sun, and H.-Q. Wei, An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients, Int. J. Comput. Math. 97 (2020), pp. 523--545.
18.
C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses, Int. J. Numer. Methods Eng., 67 (2006), pp. 697--724.
19.
M. J. Gander, On the origins of linear and non-linear preconditioning, in Domain Decomposition Methods in Science and Engineering XXIII, Lect. Notes Comput. Sci. Eng. 116, Springer, Cham, 2017, pp. 153--161.
20.
M. J. Gander, I. Graham, and E. Spence, Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math., 131 (2015), pp. 567--614.
21.
M. J. Gander and L. Halpern, Time parallelization for nonlinear problems based on diagonalization, in Domain Decomposition Methods in Science and Engineering XXIII, Lect. Notes Comput. Sci. Eng. 116, Springer, Cham, 2017, pp. 163--170.
22.
M. J. Gander, L. Halpern, J. Rannou, and J. Ryan, A direct time parallel solver by diagonalization for the wave equation, SIAM J. Sci. Comput., 41 (2019), pp. A220--A245, https://doi.org/10.1137/17M1148347.
23.
M. J. Gander and M. Petcu, Analysis of a modified parareal algorithm for second-order ordinary differential equations, AIP Conference Proceedings, 936 (2007), pp. 233--236.
24.
A. Goddard and A. Wathen, A note on parallel preconditioning for all-at-once evolutionary pdes, Electron. Trans. Numer. Anal., 51 (2019), pp. 135--150.
25.
G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 2012, https://books.google.com/books?id=5U-l8U3P-VUC.
26.
W. Govaerts and J. Pryce, A singular value inequality for block matrices, Linear Algebra Appl., 125 (1989), pp. 141--148.
27.
I. Graham, E. Spence, and E. Vainikko, Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption, Math. Comp., 86 (2017), pp. 2089--2127.
28.
A. Greenbaum, V. Pták, and Z. e. k. Strakoš, Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465--469, https://doi.org/10.1137/S0895479894275030.
29.
W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 2017, https://books.google.com/books?id=gmsmDwAAQBAJ.
30.
J. S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms, SIAM, Philadelphia, 2018, https://doi.org/10.1137/1.9781611975109.
31.
R. W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis, J. ACM, 12 (1965), pp. 95--113, https://doi.org/10.1145/321250.321259.
32.
R. A. Horn, R. A. Horn, and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994.
33.
R. J. LeVeque, Numerical Methods for Conservation Laws, 2nd ed., Birkhäuser Verlag, Basel, 1992.
34.
O. Levin, Discrete Mathematics. An Open Introduction, 3rd ed., 2019, http://discrete.openmathbooks.org/dmoi3.html.
35.
B. Li, J. Liu, and M. Xiao, A fast and stable preconditioned iterative method for optimal control problem of wave equations, SIAM J. Sci. Comput., 37 (2015), pp. A2508--A2534, https://doi.org/10.1137/15M1020526.
36.
X. Lin, M. K. Ng, and H. Sun, A separable preconditioner for time-space fractional Caputo-Riesz diffusion equations, Numer. Math. Theory Methods Appl., 11 (2018), pp. 827--853.
37.
X.-L. Lin and M. Ng, An All-at-Once Preconditioner for Evolutionary Partial Differential Equations, preprint https://arxiv.org/abs/2002.01108, 2020.
38.
X. Lu, H.-K. Pang, and H.-W. Sun, Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations, Numer. Linear Algebra Appl., 22 (2015), pp. 866--882.
39.
X. Lu, H.-K. Pang, H.-W. Sun, and S.-W. Vong, Approximate inversion method for time-fractional subdiffusion equations, Numer. Linear Algebra Appl., 25 (2018), e2132.
40.
S. P. MacLachlan and C. W. Oosterlee, Algebraic multigrid solvers for complex-valued matrices, SIAM J. Sci. Comput., 30 (2008), pp. 1548--1571, https://doi.org/10.1137/070687232.
41.
Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space\textendashtime solvers, C. R. Math. Acad. Sci. Paris, 346 (2008), pp. 113--118, https://doi.org/10.1016/j.crma.2007.09.012.
42.
E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1012--A1033, https://doi.org/10.1137/16m1062016.
43.
G. Meurant and J. D. Tebbens, The role eigenvalues play in forming GMRES residual norms with non-normal matrices, Numer. Algorithms, 68 (2015), pp. 143--165.
44.
C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
45.
A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34 (2012), pp. A1079--A1109, https://doi.org/10.1137/100818509.
46.
M. Ng, Iterative Methods for Toeplitz Systems, Iterative Methods for Toeplitz Systems, Oxford University Press, New York, 2004, https://books.google.com/books?id=o4I9TTWRE50C.
47.
H. Nguyen and R. Tsai, A stable parareal-like method for the second order wave equation, J. Comput. Phys., 405 (2020), pp. 109--156.
48.
Y. Notay, An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010), pp. 123--146.
49.
Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34 (2012), pp. A2288--A2316, https://doi.org/10.1137/110835347.
50.
Y. Notay, AGMG Software and Documentation, http://agmg.eu, 2020.
51.
P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), pp. 329--345, https://doi.org/10.1137/S0036144503429121.
52.
J. Pestana, Preconditioners for symmetrized Toeplitz and multilevel Toeplitz matrices, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 870--887, https://doi.org/10.1137/18M1205406.
53.
J. Pestana and A. J. Wathen, A preconditioned MINRES method for nonsymmetric Toeplitz matrices, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 273--288, https://doi.org/10.1137/140974213.
54.
D. Ruprecht, Wave propagation characteristics of parareal, Comput. Visual Sci., 59 (2018), pp. 1--17.
55.
D. Ruprecht and R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection system, Comput. Fluids, 59 (2012), pp. 72--83.
56.
Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461--469, https://doi.org/10.1137/0914028.
57.
Y. Saad, Iterative Methods for Sparse Linear Systems: Second Edition, SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718003.
58.
Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric matrix systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856--869, https://doi.org/10.1137/0907058.
59.
D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and Iterative Solver Software (IFISS) version 3.6, February 2019, http://www.manchester.ac.uk/ifiss/.
60.
V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer. Anal., 40 (2002), pp. 2219--2239, https://doi.org/10.1137/S0036142902401074.
61.
V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1--59.
62.
M. Struwe, Semi-linear wave equations, Bull. Amer. Math. Soc., 26 (1992), pp. 53--85.
63.
D. Titley-Peloquin, J. Pestana, and A. J. Wathen, GMRES convergence bounds that depend on the right-hand-side vector, IMA J. Numer. Anal., 34 (2013), pp. 462--479.
64.
A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329--376.
65.
S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput., 40 (2018), pp. A1446--A1472, https://doi.org/10.1137/17m1141102.
66.
S.-L. Wu, H. Zhang, and T. Zhou, Solving time-periodic fractional diffusion equations via diagonalization technique and multigrid, Numer. Linear Algebra Appl., 25 (2018), e2178, https://doi.org/10.1002/nla.2178.
67.
X. Yang, X. Liao, W. Xu, J. Song, Q. Hu, J. Su, L. Xiao, K. Lu, Q. Dou, J. Jiang and C. Yang, Th-1: China's first petaflop supercomputer, Front. Comput. Sci. China, 4 (2010), pp. 445--455.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 1912 - 1943
ISSN (online): 1095-7162

History

Submitted: 30 December 2019
Accepted: 14 September 2020
Published online: 10 December 2020

Keywords

  1. all-at-once scheme
  2. wave equations
  3. $\alpha$-circulant preconditioner
  4. parallel-in-time (PinT)
  5. diagonalization

MSC codes

  1. 65M55
  2. 65M12
  3. 65M15
  4. 65Y05

Authors

Affiliations

Funding Information

NSF of China : 11771313
NSF of Sichuan : 2018JY0469

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.