Computational Methods in Science and Engineering

Semidefinite Relaxation of Multimarginal Optimal Transport for Strictly Correlated Electrons in Second Quantization

Abstract

We consider the strictly correlated electron (SCE) limit of the fermionic quantum many-body problem in the second-quantized formalism. This limit gives rise to a multimarginal optimal transport (MMOT) problem. Here the marginal state space for our MMOT problem is the binary set 0,1, and the number of marginals is the number L of sites in the model. The costs of storing and computing the exact solution of the MMOT problem both scale exponentially with respect to L. We propose an efficient convex relaxation to the MMOT which can be solved by semidefinite programming (SDP). In particular, the semidefinite constraint is only of size 2L X 2L. We further prove that the SDP has dual attainment, in spite of the lack of Slater's condition (i.e., the primal SDP does not have any strictly feasible point). In the context of determining the lowest energy of electrons via density functional theory, such dual attainment implies the existence of an effective potential needed to solve a nonlinear Schrödinger equation via self-consistent field iteration. We demonstrate the effectiveness of our methods on computing the ground state energy of spinless and spinful Hubbard-type models. Numerical results indicate that our SDP formulation yields comparable results when using the unrelaxed MMOT formulation. We also describe how our relaxation methods generalize to arbitrary MMOT problems with pairwise cost functions.

Keywords

  1. convex relaxation
  2. strictly correlated density functional theory
  3. semidefinite programming
  4. optimal transport
  5. multimarginal optimal transport

MSC codes

  1. 49M20
  2. 90C22
  3. 90C25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
D. G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12 (1965), pp. 547--560.
2.
A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38 (1988), pp. 3098--3100.
3.
J.-D. Benamou, G. Carlier, and L. Nenna, A numerical method to solve multi-marginal optimal transport problems with Coulomb cost, in Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, New York, 2016, pp. 577--601.
4.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
5.
G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Optimal-transport formulation of electronic density-functional theory, Phys. Rev. A, 85 (2012), 062502.
6.
K. Capelle and V. L. Campo, Density functionals and model Hamiltonians: Pillars of many-particle physics, Phys. Rep., 528 (2013), pp. 91--159.
7.
H. Chen, G. Friesecke, and C. B. Mendl, Numerical methods for a Kohn-Sham density functional model based on optimal transport, J. Chem. Theory Comput., 10 (2014), pp. 4360--4368.
8.
J. P. Coe, Lattice density-functional theory for quantum chemistry, Phys. Rev. B, 99 (2019), 165118.
9.
A. J. Coleman, Structure of fermion density matrices, Rev. Modern Phys., 35 (1963), pp. 668--689.
10.
M. Colombo, S. Di Marino, and F. Stra, Continuity of multimarginal optimal transport with repulsive cost, SIAM J. Math. Anal., 51 (2019), pp. 2903--2926, https://doi.org/10.1137/19M123943X.
11.
C. Cotar, G. Friesecke, and C. Klüppelberg, Density functional theory and optimal transportation with Coulomb cost, Comm. Pure Appl. Math., 66 (2013), pp. 548--599.
12.
C. Cotar, G. Friesecke, and C. Klüppelberg, Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg--Kohn functional, Arch. Ration. Mech. Anal., 228 (2018), pp. 891--922.
13.
L. De Pascale, Optimal transport with Coulomb cost. Approximation and duality, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 1643--1657.
14.
S. Di Marino, A. Gerolin, and L. Nenna, Optimal transportation theory with repulsive costs, in Topological Optimization and Optimal Transport, Radon Ser. Comput. Appl. Math. 17, De Gruyter, Berlin, 2017, pp. 204--256.
15.
G. Friesecke, C. B. Mendl, B. Pass, C. Cotar, and C. Klüppelberg, N-density representability and the optimal transport limit of the Hohenberg-Kohn functional, J. Chem. Phys., 139 (2013), 164109.
16.
G. Friesecke and D. Vögler, Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces, SIAM J. Math. Anal., 50 (2018), pp. 3996--4019, https://doi.org/10.1137/17M1150025.
17.
A. Gerolin, A. Kausamo, and T. Rajala, Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces, ESAIM Control Optim. Calc. Var., 25 (2019), 62.
18.
M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming, http://cvxr.com/cvx, 2013.
19.
J. Grossi, D. P. Kooi, K. J. H. Giesbertz, M. Seidl, A. J. Cohen, P. Mori-Sánchez, and P. Gori-Giorgi, Fermionic statistics in the strongly correlated limit of density functional theory, J. Chem. Theory Comput., 13 (2017), pp. 6089--6100.
20.
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864--B871.
21.
Y. Khoo and L. Ying, Convex Relaxation Approaches for Strictly Correlated Density Functional Theory, preprint, https://arxiv.org/abs/1808.04496, 2018.
22.
W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965), pp. A1133--A1138.
23.
H. Komiya, Elementary proof for Sion's minimax theorem, Kodai Math. J., 11 (1988), pp. 5--7.
24.
C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 37 (1988), pp. 785--789.
25.
M. Levy, Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem, Proc. Natl. Acad. Sci. USA, 76 (1979), pp. 6062--6065.
26.
M. Lewin, Semi-classical limit of the Levy--Lieb functional in density functional theory, C. R. Math. Acad. Sci. Paris, 356 (2018), pp. 449--455.
27.
E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum Chem., 24 (1983), pp. 243--277.
28.
N. A. Lima, L. N. Oliveira, and K. Capelle, Density-functional study of the Mott gap in the Hubbard model, Europhys. Lett., 60 (2002), pp. 601--607.
29.
L. Lin and C. Yang, Elliptic preconditioner for accelerating the self-consistent field iteration in Kohn--Sham density functional theory, SIAM J. Sci. Comput., 35 (2013), pp. S277--S298, https://doi.org/10.1137/120880604.
30.
F. Malet and P. Gori-Giorgi, Strong correlation in Kohn-Sham density functional theory, Phys. Rev. Lett., 109 (2012), 246402.
31.
F. Malet, A. Mirtschink, K. J. H. Giesbertz, L. O. Wagner, and P. Gori-Giorgi, Exchange--correlation functionals from the strong interaction limit of DFT: Applications to model chemical systems, Phys. Chem. Chem. Phys., 16 (2014), pp. 14551--14558.
32.
D. Mazziotti, Realization of quantum chemistry without wave functions through first-order semidefinite programming, Phys. Rev. Lett., 93 (2004), 213001.
33.
D. Mazziotti, Structure of fermionic density matrices: Complete N-representability conditions, Phys. Rev. Lett., 108 (2012), 263002.
34.
D. A. Mazziotti, Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions, Phys. Rev. A, 57 (1998), 4219.
35.
J. R. McClean et al., OpenFermion: The Electronic Structure Package for Quantum Computers, preprint, https://arxiv.org/abs/1710.07629, 2017.
36.
C. Mendl and L. Lin, Kantorovich dual solution for strictly correlated electrons in atoms and molecules, Phys. Rev. B, 87 (2013), 125106.
37.
C. B. Mendl, F. Malet, and P. Gori-Giorgi, Wigner localization in quantum dots from Kohn-Sham density functional theory without symmetry breaking, Phys. Rev. B, 89 (2014), 125106.
38.
M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa, Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm, J. Chem. Phys., 114 (2001), pp. 8282--8292.
39.
J. W. Negele and H. Orland, Quantum Many-Particle Systems, Addison-Wesley, Redwood City, CA, 1988.
40.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996), pp. 3865--3868.
41.
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 23 (1981), pp. 5048--5079.
42.
P. Pulay, Convergence acceleration of iterative sequences: The case of SCF iteration, Chem. Phys. Lett., 73 (1980), pp. 393--398.
43.
S. Raghu, S. A. Kivelson, and D. J. Scalapino, Superconductivity in the repulsive Hubbard model: An asymptotically exact weak-coupling solution, Phys. Rev. B, 81 (2010), 224505.
44.
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
45.
K. Schönhammer, O. Gunnarsson, and R. M. Noack, Density-functional theory on a lattice: Comparison with exact numerical results for a model with strongly correlated electrons, Phys. Rev. B, 52 (1995), 2504.
46.
M. Seidl, P. Gori-Giorgi, and A. Savin, Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities, Phys. Rev. A, 75 (2007), 042511.
47.
M. Seidl, J. P. Perdew, and M. Levy, Strictly correlated electrons in density-functional theory, Phys. Rev. A, 59 (1999), 51.
48.
B. Senjean, N. Nakatani, M. Tsuchiizu, and E. Fromager, Multiple impurities and combined local density approximations in site-occupation embedding theory, Theoret. Chem. Accounts, 137 (2018), 169.
49.
C. Villani, Optimal Transport: Old and New, Springer, New York, 2009.
50.
D. Vögler, Kantorovich vs. Monge: A Numerical Classification of Extremal Multi-Marginal Mass Transports on Finite State Spaces, preprint, https://arxiv.org/abs/1901.04568, 2019.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1462 - B1489
ISSN (online): 1095-7197

History

Submitted: 6 January 2020
Accepted: 9 September 2020
Published online: 1 December 2020

Keywords

  1. convex relaxation
  2. strictly correlated density functional theory
  3. semidefinite programming
  4. optimal transport
  5. multimarginal optimal transport

MSC codes

  1. 49M20
  2. 90C22
  3. 90C25

Authors

Affiliations

Funding Information

Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : FA9550-18-1-0095
Office of Science https://doi.org/10.13039/100006132 : DE-SC0017867, DE-AC02-05CH11231
Office of Science https://doi.org/10.13039/100006132
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1818449
National Science Foundation https://doi.org/10.13039/100000001 : DGE-1106400

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media