Abstract

The totally asymmetric simple exclusion process (TASEP) is a basic model of statistical mechanics that has found numerous applications. We consider the case of TASEP with a finite chain where particles may enter from the left and leave to the right at prescribed rates. This model can be formulated as a Markov process with a finite number of states. Due to the irreducibility of the process, it is well-known that the probability distribution on the states is globally attracted to a unique equilibrium distribution. We extend this result to the more detailed level of individual trajectories. To do so we formulate TASEP as a random dynamical system. Our main result is that the trajectories from all possible initial conditions contract to each other yielding the existence of a random attractor that consists of a single trajectory almost surely. This implies that in the long run TASEP “filters out” any perturbation that changes the state of the particles along the chain.

Keywords

  1. ribosome flow model
  2. contraction
  3. random dynamical system
  4. synchronization
  5. random attractor

MSC codes

  1. 37H99
  2. 34D06
  3. 37A60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 1998.
2.
L. Arnold and H. Crauel, Random dynamical systems, in Lyapunov Exponents: Proceedings of a Conference held in Oberwolfach, May 28--June 2, 1990, L. Arnold, H. Crauel, and J.-P. Eckmann, eds., Lecture Notes in Math. 1486, Springer-Verlag, Berlin, 1991, pp. 1--22.
3.
E. Bar-Shalom, A. Ovseevich, and M. Margaliot, Ribosome flow model with different site sizes, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 541--576, https://doi.org/10.1137/19M1250571.
4.
P. H. Baxendale and D. W. Stroock, Large deviations and stochastic flows of diffeomorphisms, Probab. Theory Related Fields, 80 (1988), pp. 169--215.
5.
R. A. Blythe and M. R. Evans, Nonequilibrium steady states of matrix-product form: A solver's guide, J. Phys. A, 40 (2007), pp. R333--R441.
6.
D. N. Cheban, P. E. Kloeden, and B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), pp. 125--144.
7.
D. Chowdhury, A. Schadschneider, and K. Nishinari, Physics of transport and traffic phenomena in biology: From molecular motors and cells to organisms, Phys. Life Rev., 2 (2005), pp. 318--352.
8.
L. Ciandrini, M. C. Romano, and A. Parmeggiani, Stepping and crowding of molecular motors: Statistical kinetics from an exclusion process perspective, Biophys. J., 107 (2014), pp. 1176--1184.
9.
I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1 (2012), 1130001.
10.
H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math.-Ver., 117 (2015), pp. 173--206.
11.
B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a $1$D asymmetric exclusion model using a matrix formulation, J. Phys. A, 26 (1993), pp. 1493--1517.
12.
N. Gantert, E. Nestoridi, and D. Schmid, Mixing Times for the Simple Exclusion Process with Open Boundaries, preprint, http://arxiv.org/abs/2003.03781, 2020.
13.
T. E. Harris, Additive set-valued Markov processes and graphical methods, Ann. Probab., 6 (1978), pp. 355--378.
14.
K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys., 209 (2000), pp. 437--476.
15.
J. F. C. Kingman, Poisson Processes, Oxford Stud. Probab. 3, The Clarendon Press, Oxford University Press, New York, 1993.
16.
V. A. Kleptsyn and M. B. Nalskii, Contraction of orbits in random dynamical systems on the circle, Funct. Anal. Appl., 38 (2004), pp. 267--282.
17.
J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett., 67 (1991), pp. 1882--1885.
18.
J. Krug, Nonequilibrium stationary states as products of matrices, J. Phys. A, 49 (2016), 421002.
19.
D. A. Levin and Y. Peres, Markov Chains and Mixing Times, 2nd ed., with contributions by Elizabeth L. Wilmer, with a chapter on “Coupling from the past” by James G. Propp and David B. Wilson, American Mathematical Society, Providence, RI, 2017.
20.
T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Grundlehren Math. Wiss. 324, Springer-Verlag, Berlin, 1999.
21.
C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Kinetics of biopolymerization on nucleic acid templates, Biopolymers, 6 (1968), pp. 1--25.
22.
M. Margaliot, L. Grüne, and T. Kriecherbauer, Entrainment in the master equation, R. Soc. Open Sci., 5 (2018), 172157, https://doi.org/10.1098/rsos.172157.
23.
M. Margaliot, E. D. Sontag, and T. Tuller, Entrainment to periodic initiation and transition rates in a computational model for gene translation, PLoS ONE, 9 (2014), e96039.
24.
M. Margaliot, E. D. Sontag, and T. Tuller, Contraction after small transients, Automatica J. IFAC, 67 (2016), pp. 178--184.
25.
M. Margaliot and T. Tuller, Stability analysis of the ribosome flow model, IEEE/ACM Trans. Comput. Biol. Bioinf., 9 (2012), pp. 1545--1552.
26.
I. Nanikashvili, Y. Zarai, A. Ovseevich, T. Tuller, and M. Margaliot, Networks of ribosome flow models for modeling and analyzing intracellular traffic, Sci. Rep., 9 (2019), 1703.
27.
J. Newman, Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), pp. 1857--1875.
28.
Q.-C. Pham, N. Tabareau, and J.-J. Slotine, A contraction theory approach to stochastic incremental stability, IEEE Trans. Automat. Control, 54 (2009), pp. 816--820.
29.
G. Poker, Y. Zarai, M. Margaliot, and T. Tuller, Maximizing protein translation rate in the non-homogeneous ribosome flow model: A convex optimization approach, J. R. Soc. Interface, 11 (2014), 20140713, https://doi.org/10.1098/rsif.2014.0713.
30.
J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality class, J. Stat. Phys., 160 (2015), pp. 965--984.
31.
A. Raveh, M. Margaliot, E. Sontag, and T. Tuller, A model for competition for ribosomes in the cell, J. R. Soc. Interface, 13 (2016), 20151062.
32.
S. Reuveni, I. Meilijson, M. Kupiec, E. Ruppin, and T. Tuller, Genome-scale analysis of translation elongation with a ribosome flow model, PLoS Comput. Biol., 7 (2011), e1002127.
33.
J. L. Ross, The impacts of molecular motor traffic jams, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 5911--5912.
34.
A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic Transport in Complex Systems: From Molecules to Vehicles, Elsevier, Amsterdam, 2011.
35.
M. Scheutzow, Comparison of various concepts of a random attractor: A case study, Arch. Math. (Basel), 78 (2002), pp. 233--240.
36.
C. L. Simms, L. L. Yan, J. K. Qiu, and H. S. Zaher, Ribosome collisions result in $+1$ frameshifting in the absence of no-go decay, Cell Rep., 28 (2019), pp. 1679--1689.e4.
37.
C. A. Tracy and H. Widom, Integral formulas for the asymmetric simple exclusion process, Comm. Math. Phys., 279 (2008), pp. 815--844.
38.
Y. Zarai, M. Margaliot, and T. Tuller, Ribosome flow model with extended objects, J. Roy. Soc. Interface, 14 (2017), 20170128, https://doi.org/10.1098/rsif.2017.0128.
39.
Y. Zarai, M. Margaliot, and T. Tuller, Modeling and analyzing the flow of molecular machines in gene expression, in Systems Biology, N. Rajewsky, S. Jurga, and J. Barciszewski, eds., Springer, 2018, pp. 275--300.
40.
R. Zia, J. Dong, and B. Schmittmann, Modeling translation in protein synthesis with TASEP: A tutorial and recent developments, J. Stat. Phys., 144 (2011), pp. 405--428.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 65 - 93
ISSN (online): 1536-0040

History

Submitted: 22 January 2020
Accepted: 26 August 2020
Published online: 7 January 2021

Keywords

  1. ribosome flow model
  2. contraction
  3. random dynamical system
  4. synchronization
  5. random attractor

MSC codes

  1. 37H99
  2. 34D06
  3. 37A60

Authors

Affiliations

Funding Information

US-Israel Binational Science Foundation
Israel Science Foundation https://doi.org/10.13039/501100003977

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.