Abstract

This work develops novel time integration methods for the compressible Euler equations in the Lagrangian frame that are of arbitrary high order and exactly preserve the mass, momentum, and total energy of the system. The equations are considered in nonconservative form, that is, common for staggered grid hydrodynamics (SGH) methods; namely, the evolved quantities are mass, momentum, and internal energy. A general family of time integration schemes is formulated, and practical pairs for orders three and four are derived. Numerical results on standard hydrodynamics benchmarks confirm the high-order convergence on smooth problems and the exact numerical preservation of all physically conserved quantities.

Keywords

  1. Lagrangian hydrodynamics
  2. high-order time integration
  3. energy conservation
  4. IMEX Runge--Kutta pairs

MSC codes

  1. 65L05
  2. 65L06

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Abgrall and S. Tokareva, Staggered grid residual distribution scheme for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 39 (2017), pp. A2317--A2344, https://doi.org/10.1137/16M1078781.
2.
R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini, MFEM: A modular finite element methods library, Comput. Math. Appl., 81 (2021), pp. 42--74.
3.
A. Barlow, R. Hill, and M. Shashkov, Constrained optimization framework for interface-aware sub-scale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian--Eulerian hydrodynamics, J. Comput. Phys., 276 (2014), pp. 92--135.
4.
D. J. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 235--394.
5.
D. Burton, Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity, in Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, H. E. Trease, M. F. Fritts, and W. P. Crowley, eds., Lecture Notes in Physics 395, Springer, Berlin, Heidelberg, 1991, pp. 7--19.
6.
E. Caramana, D. Burton, M. Shashkov, and P. Whalen, The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146 (1998), pp. 227--262.
7.
A. Cardone, Z. Jackiewicz, A. Sandu, and H. Zhang, Extrapolated implicit-explicit Runge-Kutta methods, Math. Model. Anal., 19 (2014), pp. 18--43, https://doi.org/10.3846/13926292.2014.892903.
8.
E. M. Constantinescu and A. Sandu, Extrapolated implicit-explicit time stepping, SIAM J. Sci. Comput., 31 (2010), pp. 4452--4477, https://doi.org/10.1137/080732833.
9.
V. A. Dobrev, T. V. Kolev, and R. N. Rieben, High-order curvilinear finite element methods for Lagrangian hydrodynamics, SIAM J. Sci. Comput., 34 (2012), pp. B606-B641, https://doi.org/10.1137/120864672.
10.
V. A. Dobrev, T. V. Kolev, R. N. Rieben, and V. Z. Tomov, Multi-material closure model for high-order finite element Lagrangian hydrodynamics, Int. J. Numer. Methods Fluids, 82 (2016), pp. 689--706.
11.
M. Dumbser, W. Boscheri, M. Semplice, and G. Russo, Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes, SIAM J. Sci. Comput., 39 (2017), pp. A2564--A2591, https://doi.org/10.1137/17M1111036.
12.
J.-L. Guermond and B. Popov, Viscous regularization of the Euler equations and entropy principles, SIAM J. Appl. Math., 74 (2014), pp. 284--305, https://doi.org/10.1137/120903312.
13.
M. Günther and A. Sandu, Multirate generalized additive Runge-Kutta methods, Numer. Math., 133 (2016), pp. 497--524, https://doi.org/10.1007/s00211-015-0756-z.
14.
E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, Heidelberg, 1993.
15.
E. Hairer and G. Wanner, Solving Ordinary Differential Equations \textupII: Stiff and Differential-Algebraic Problems, 2nd ed., Springer Ser. Comput. Math. 14, Springer-Verlag, Berlin, Heidelberg, 1996.
16.
C. Kennedy and M. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139--181.
17.
C. A. Kennedy and M. H. Carpenter, Higher-order additive Runge--Kutta schemes for ordinary differential equations, Appl. Numer. Math., 136 (2019), pp. 183--205, https://doi.org/10.1016/j.apnum.2018.10.007.
18.
T. Kolev and R. Rieben, A tensor artificial viscosity using a finite element approach, J. Comput. Phys., 228 (2009), pp. 8336--8366.
19.
Laghos: High-Order Lagrangian Hydrodynamics Miniapp, 2019, http://github.com/CEED/Laghos.
20.
A. Llor, A. Claisse, and C. Fochesato, Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes, J. Comput. Phys., 309 (2016), pp. 324--349.
21.
Modular Finite Element Methods Library (MFEM), 2010, https://doi.org/10.11578/dc.20171025.1248.
22.
H. Ockendon and J. Ockendon, Waves and Compressible Flow, 2nd ed., Texts Appl. Math. 47, Springer-Verlag, New York, 2004.
23.
A. Sandu and M. Günther, A generalized-structure approach to additive Runge--Kutta methods, SIAM J. Numer. Anal., 53 (2015), pp. 17--42, https://doi.org/10.1137/130943224.
24.
J. M. Sanz-Serna, Symplectic Runge--Kutta and related methods: Recent results, Phys. D, 60 (1992), pp. 293--302.
25.
L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 10th ed., CRC Press, Boca Raton, FL, 1993.
26.
U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), pp. 151--167.
27.
J. von Neumann and R. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), pp. 232--237.
28.
H. Zhang, A. Sandu, and S. Blaise, Partitioned and implicit--explicit general linear methods for ordinary differential equations, J. Sci. Comput., 61 (2014), pp. 119--144, https://doi.org/10.1007/s10915-014-9819-z.
29.
H. Zhang, A. Sandu, and S. Blaise, High order implicit--explicit general linear methods with optimized stability regions, SIAM J. Sci. Comput., 38 (2016), pp. A1430--A1453, https://doi.org/10.1137/15M1018897.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A221 - A241
ISSN (online): 1095-7197

History

Submitted: 22 January 2020
Accepted: 2 October 2020
Published online: 12 January 2021

Keywords

  1. Lagrangian hydrodynamics
  2. high-order time integration
  3. energy conservation
  4. IMEX Runge--Kutta pairs

MSC codes

  1. 65L05
  2. 65L06

Authors

Affiliations

Funding Information

Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : 15RT1037
Lawrence Livermore National Laboratory https://doi.org/10.13039/100006227 : DE-AC52-07NA27344
National Science Foundation https://doi.org/10.13039/100000001 : CCF-1613905, ACI-1709727

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media