Abstract

We study distributional solutions to the radially symmetric aggregation equation for power-law potentials. We show that distributions containing spherical shells form part of a basin of attraction in the space of solutions in the sense of “shifting stability." For spherical shell initial data, we prove the exponential convergence of solutions to equilibrium and construct some explicit solutions for specific ranges of attractive power. We further explore results concerning the evolution and equilibria for initial data formed from convex combinations of spherical shells.

Keywords

  1. aggregation equation
  2. gradient flow
  3. spherical shells

MSC codes

  1. 35Q70
  2. 35F25
  3. 35Q92

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Albi, D. Balagué, J. A. Carrillo, and J. von Brecht, Stability analysis of flock and mill rings for second order models in swarming, SIAM J. Appl. Math., 74 (2014), pp. 794--818, https://doi.org/10.1137/13091779X.
2.
L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2008.
3.
L. Ambrosio and S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., 61 (2008), pp. 1495--1539, https://doi.org/10.1002/cpa.20223.
4.
D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal., 209 (2013), pp. 1055--1088, https://doi.org/10.1007/s00205-013-0644-6.
5.
D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), pp. 5--25, https://doi.org/10.1016/j.physd.2012.10.002.
6.
D. Balagué, J. A. Carrillo, and Y. Yao, Confinement for repulsive-attractive kernels, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), pp. 1227--1248, https://doi.org/10.3934/dcdsb.2014.19.1227.
7.
A. Barbaro, B. Einarsson, B. Birnir, S. Sigurdsson, H. Valdimarsson, Ó. K. Pálsson, S. Sveinbjörnsson, and T. Sigurdsson, Modelling and simulations of the migration of pelagic fish, ICES J. Mar. Sci., 66 (2009), pp. 826--838.
8.
A. B. T. Barbaro, K. Taylor, P. F. Trethewey, L. Youseff, and B. Birnir, Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin, Math. Comput. Simulation, 79 (2009), pp. 3397--3414, https://doi.org/10.1016/j.matcom.2008.11.018.
9.
D. Benedetto, E. Caglioti, and M. Pulvirenti, Erratum: “A kinetic equation for granular media” [RAIRO Modél. Math. Anal. Numér., 31 (1997), pp. 615--641; MR1471181], M2AN Math. Model. Numer. Anal., 33 (1999), pp. 439--441, https://doi.org/10.1051/m2an:1999118.
10.
A. L. Bertozzi, J. A. Carrillo, and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22 (2009), pp. 683--710, https://doi.org/10.1088/0951-7715/22/3/009.
11.
A. L. Bertozzi, T. Kolokolnikov, H. Sun, D. Uminsky, and J. von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci., 13 (2015), pp. 955--985, https://doi.org/10.4310/CMS.2015.v13.n4.a6.
12.
A. L. Bertozzi, T. Laurent, and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), pp. 45--83, https://doi.org/10.1002/cpa.20334.
13.
B. Birnir, An ODE model of the motion of pelagic fish, J. Stat. Phys., 128 (2007), pp. 535--568, https://doi.org/10.1007/s10955-007-9292-2.
14.
A. Blanchet, V. Calvez, and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak--Keller--Segel model, SIAM J. Numer. Anal., 46 (2008), pp. 691--721, https://doi.org/10.1137/070683337.
15.
A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\Bbb R^2$, Comm. Pure Appl. Math., 61 (2008), pp. 1449--1481, https://doi.org/10.1002/cpa.20225.
16.
J. A. Can͂izo, J. A. Carrillo, and F. S. Patacchini, Existence of compactly supported global minimisers for the interaction energy, Arch. Ration. Mech. Anal., 217 (2015), pp. 1197--1217, https://doi.org/10.1007/s00205-015-0852-3.
17.
J. A. Can͂izo and F. S. Patacchini, Discrete minimisers are close to continuum minimisers for the interaction energy, Calc. Var. Partial Differential Equations, 57 (2018), 24, https://doi.org/10.1007/s00526-017-1289-3.
18.
J. A. Carrillo, M. Chipot, and Y. Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130399, 13, https://doi.org/10.1098/rsta.2013.0399.
19.
J. A. Carrillo, M. R. D'Orsogna, and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinet. Relat. Models, 2 (2009), pp. 363--378, https://doi.org/10.3934/krm.2009.2.363.
20.
J. A. Carrillo, A. Figalli, and F. S. Patacchini, Geometry of minimizers for the interaction energy with mildly repulsive potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), pp. 1299--1308, https://doi.org/10.1016/j.anihpc.2016.10.004.
21.
J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Boston, MA, 2010, pp. 297--336, https://doi.org/10.1007/978-0-8176-4946-3_12.
22.
J. A. Carrillo and Y. Huang, Explicit equilibrium solutions for the aggregation equation with power-law potentials, Kinet. Relat. Models, 10 (2017), pp. 171--192, https://doi.org/10.3934/krm.2017007.
23.
J. A. Carrillo, R. J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), pp. 971--1018, https://doi.org/10.4171/RMI/376.
24.
J. A. Carrillo, R. J. McCann, and C. Villani, Contractions in the $2$-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), pp. 217--263, https://doi.org/10.1007/s00205-005-0386-1.
25.
J. A. Carrillo and J. S. Moll, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM J. Sci. Comput., 31 (2009), pp. 4305--4329, https://doi.org/10.1137/080739574.
26.
K. Craig and A. L. Bertozzi, A blob method for the aggregation equation, Math. Comp., 85 (2016), pp. 1681--1717, https://doi.org/10.1090/mcom3033.
27.
K. Craig and I. Topaloglu, Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), pp. 34--60, https://doi.org/10.1137/15M1013882.
28.
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), pp. 1193--1215, https://doi.org/10.1142/S0218202508003005.
29.
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbb{R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611--616, https://doi.org/10.1016/j.crma.2004.08.011.
30.
H. Dong, The aggregation equation with power-law kernels: Ill-posedness, mass concentration and similarity solutions, Comm. Math. Phys., 304 (2011), pp. 649--664, https://doi.org/10.1007/s00220-011-1237-6.
31.
Q. Du and P. Zhang, Existence of weak solutions to some vortex density models, SIAM J. Math. Anal., 34 (2003), pp. 1279--1299, https://doi.org/10.1137/S0036141002408009.
32.
K. Fellner and G. Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci., 20 (2010), pp. 2267--2291, https://doi.org/10.1142/S0218202510004921.
33.
R. C. Fetecau and Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D, 260 (2013), pp. 49--64, https://doi.org/10.1016/j.physd.2012.11.004.
34.
R. C. Fetecau, Y. Huang, and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), pp. 2681--2716, https://doi.org/10.1088/0951-7715/24/10/002.
35.
J. Garnier, G. Papanicolaou, and T.-W. Yang, Large deviations for a mean field model of systemic risk, SIAM J. Financial Math., 4 (2013), pp. 151--184, https://doi.org/10.1137/12087387X.
36.
L. Gosse and G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28 (2006), pp. 1203--1227, https://doi.org/10.1137/050628015.
37.
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), pp. 415--435, https://doi.org/10.3934/krm.2008.1.415.
38.
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation, J. Artif. Soc. Soc. Simul., 5 (2002).
39.
D. D. Holm and V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles, Phys. D, 220 (2006), pp. 183--196, https://doi.org/10.1016/j.physd.2006.07.010.
40.
T. Kolokolnikov, J. A. Carrillo, A. Bertozzi, R. Fetecau, and M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial], Phys. D, 260 (2013), pp. 1--4, https://doi.org/10.1016/j.physd.2013.06.011.
41.
H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows, Arch. Ration. Mech. Anal., 172 (2004), pp. 407--428, https://doi.org/10.1007/s00205-004-0307-8.
42.
T. Lim and R. J. McCann, Isodiametry, Variance, and Regular Simplices from Particle Interactions, preprint, https://arxiv.org/abs/1907.13593, 2019.
43.
F. Lin and P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices, Discrete Contin. Dynam. Systems, 6 (2000), pp. 121--142, https://doi.org/10.3934/dcds.2000.6.121.
44.
O. Lopes, Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun. Pure Appl. Anal., 18 (2019), pp. 2265--2282, https://doi.org/10.3934/cpaa.2019102.
45.
E. Mainini, A global uniqueness result for an evolution problem arising in superconductivity, Boll. Unione Mat. Ital. (9), 2 (2009), pp. 509--528.
46.
N. Masmoudi and P. Zhang, Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), pp. 441--458, https://doi.org/10.1016/j.anihpc.2004.07.002.
47.
A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), pp. 534--570, https://doi.org/10.1007/s002850050158.
48.
S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), pp. 923--947, https://doi.org/10.1007/s10955-011-0285-9.
49.
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), pp. 577--621, https://doi.org/10.1137/120901866.
50.
E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising in superconductivity, Ann. Sci. École Norm. Sup. (4), 33 (2000), pp. 561--592, https://doi.org/10.1016/S0012-9593(00)00122-1.
51.
E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progr. Nonlinear Differential Equations Appl. 70, Birkhäuser Boston, Boston, MA, 2007.
52.
C. M. Topaz, A. J. Bernoff, S. Logan, and W. Toolson, A model for rolling swarms of locusts, Eur. Phys. J. Spec. Top., 157 (2008), pp. 93--109.
53.
C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), pp. 152--174, https://doi.org/10.1137/S0036139903437424.
54.
C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol., 68 (2006), pp. 1601--1623, https://doi.org/10.1007/s11538-006-9088-6.
55.
G. Toscani, One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 1277--1291, https://doi.org/10.1051/m2an:2000127.
56.
C. Villani, Topics in Optimal Transportation, Grad. Stud. Math. 58, American Mathematical Society, Providence, RI, 2003, https://doi.org/10.1090/gsm/058.
57.
E. Weinan, Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity, Phys. Rev. B, 50 (1994), pp. 1126--1135.
58.
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, 2nd ed., Texts Appl. Math. 2, Springer, New York, 2003.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 2628 - 2657
ISSN (online): 1536-0040

History

Submitted: 22 January 2020
Accepted: 2 September 2020
Published online: 19 November 2020

Keywords

  1. aggregation equation
  2. gradient flow
  3. spherical shells

MSC codes

  1. 35Q70
  2. 35F25
  3. 35Q92

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/P031587/1

Funding Information

European Research Council https://doi.org/10.13039/501100000781 : 883363

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1319462

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media