Abstract

We analyze a nonlocal partial differential equation (PDE) model describing the dynamics of adaptation of a phenotypically structured population, under the effects of mutation and selection, in a changing environment. Previous studies have analyzed the large-time behavior of such models, with particular forms of environmental changes---either linearly changing or periodically fluctuating. We use here a completely different mathematical approach, which allows us to consider very general forms of environmental variations and to give an analytic description of the full trajectories of adaptation, including the transient phase, before a stationary behavior is reached. The main idea behind our approach is to study a bivariate distribution of two “fitness components" that contains enough information to describe the distribution of fitness at any time. This distribution solves a degenerate parabolic equation that is dealt with by defining a multidimensional cumulant generating function associated with the distribution and solving the associated transport equation. We apply our results to several examples and check their accuracy using stochastic individual-based simulations as a benchmark. These examples illustrate the importance of being able to describe the transient dynamics of adaptation to understand the development of drug resistance in pathogens.

Keywords

  1. nonlocal
  2. partial differential equation
  3. adaptation
  4. moving optimum
  5. mutation
  6. generating functions

MSC codes

  1. 35Q92
  2. 35R09
  3. 45G10
  4. 45K05
  5. 45M05
  6. 92D10
  7. 92D15

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Adaptation in general temporally changing environments

Authors: L. Roques, F. Patout, O. Bonnefon, and G. Martin

File: S1.pdf

Type: PDF

Contents: Description of the algorithm that was used for the numerical computation of the integro-differential model (4).


File: S2.pdf

Type: PDF

Contents: Additional computations corresponding to small mutation rates.


File: S3.zip

Type: Compressed file

Contents: C++ source code corresponding to the numerical solver of (4).


File: S4.zip

Type: Compressed file

Contents: Matlab source code corresponding to the individual-based model.

References

1.
M. Alfaro, H. Berestycki, and G. Raoul, The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition, SIAM J. Math. Anal., 49 (2017), pp. 562--596, https://doi.org/10.1137/16M1075934.
2.
M. Alfaro and R. Carles, Explicit solutions for replicator-mutator equations: Extinction versus acceleration, SIAM J. Appl. Math., 74 (2014), pp. 1919--1934, https://doi.org/10.1137/140979411.
3.
M. Alfaro and R. Carles, Replicator-mutator equations with quadratic fitness, Proc. Amer. Math. Soc., 145 (2017), pp. 5315--5327.
4.
M. Alfaro and M. Veruete, Evolutionary branching via replicator-mutator equations, J. Dynam. Differential Equations, 31 (2019), pp. 2029--2052.
5.
D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations, 3 (1967), pp. 1--14.
6.
G. Barles, S. Mirrahimi, and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16 (2009), pp. 321--340.
7.
H. Berestycki, O. Diekmann, C. J. Nagelkerke, and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull Math Biol, 71 (2009), pp. 399--429.
8.
H. Berestycki and J. Fang, Forced waves of the fisher--KPP equation in a shifting environment, J. Differential Equations, 264 (2018), pp. 2157--2183.
9.
H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), pp. 41--67.
10.
C. Carrère and G. Nadin, Influence of mutations in phenotypically-structured populations in time periodic environment, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), pp. 3609--3630.
11.
J. Chabrowski, Sur la construction de la solution fondamentale de l'équation parabolique aux coefficients non bornés, Colloq. Math., 21 (1970), pp. 141--148.
12.
N. Champagnat, R. Ferrière, and S. Méléard, Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theoret. Popul. Biol., 69 (2006), pp. 297--321.
13.
M. Costa, C. Etchegaray, and S. Mirrahimi, Survival Criterion for a Population Subject to Selection and Mutations; Application to Temporally Piecewise Constant Environments, HAL preprint 02126707, https://hal.archives-ouvertes.fr/hal-02126707, 2019.
14.
O. Diekmann, P.-E. Jabin, S. Mischler, and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton--Jacobi approach, Theoret. Popul. Biol., 67 (2005), pp. 257--271.
15.
S. Figueroa Iglesias and S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., 50 (2018), pp. 5537--5568, https://doi.org/10.1137/18M1175185.
16.
S. Figueroa Iglesias and S. Mirrahimi, Selection and Mutation in a Shifting and Fluctuating Environment, HAL preprint 02320525, https://hal.archives-ouvertes.fr/hal-02320525, 2019.
17.
C. Fraïsse and J. J. Welch, The distribution of epistasis on simple fitness landscapes, Biol. Lett., 15 (2019), 20180881.
18.
S. Gandon and S. Mirrahimi, A Hamilton--Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, C. R. Math. Acad. Sci. Paris, 355 (2017), pp. 155--160.
19.
M.-E. Gil, F. Hamel, G. Martin, and L. Roques, Mathematical properties of a class of integro-differential models from population genetics, SIAM J. Appl. Math., 77 (2017), pp. 1536--1561, https://doi.org/10.1137/16M1108224.
20.
M.-E. Gil, F. Hamel, G. Martin, and L. Roques, Dynamics of fitness distributions in the presence of a phenotypic optimum: An integro-differential approach, Nonlinearity, 32 (2019), pp. 3485--3522.
21.
R. Gomulkiewicz and R. D. Holt, When does evolution by natural selection prevent extinction?, Evolution, 49 (1995), pp. 201--207.
22.
R. Gomulkiewicz, S. M. Krone, and C. H. Remien, Evolution and the duration of a doomed population, Evolution. Appl., 10 (2017), pp. 471--484.
23.
F. Hamel, F. Lavigne, G. Martin, and L. Roques, Dynamics of adaptation in an anisotropic phenotype-fitness landscape, Nonlinear Anal. Real World Appl., 54 (2020), 103107.
24.
M. Kimura, A stochastic model concerning the maintenance of genetic variability in quantitative characters, Proc. Natl. Acad. Sci. USA, 54 (1965), pp. 731--736.
25.
R. Lande, The genetic covariance between characters maintained by pleiotropic mutations, Genetics, 94 (1980), pp. 203--215.
26.
S. Liu, Y. Lou, R. Peng, and M. Zhou, Monotonicity of the principal eigenvalue for a linear time-periodic parabolic operator, Proc. Amer. Math. Soc., 147 (2019), pp. 5291--5302.
27.
T. Lorenzi, R. H. Chisholm, L. Desvillettes, and B. D. Hughes, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, J. Theoret. Biol., 386 (2015), pp. 166--176.
28.
A. Lorz, S. Mirrahimi, and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), pp. 1071--1098.
29.
G. Martin and T. Lenormand, The fitness effect of mutations across environments: A survey in light of fitness landscape models, Evolution, 60 (2006), pp. 2413--2427.
30.
G. Martin and T. Lenormand, The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima, Evolution, 69 (2015), pp. 1433--1447.
31.
G. Martin and L. Roques, The non-stationary dynamics of fitness distributions: Asexual model with epistasis and standing variation, Genetics, 204 (2016), pp. 1541--1558.
32.
B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57 (2008), pp. 3275--3301.
33.
W. Rudin, Real and Complex Analysis, reprint, McGraw-Hill Ser. Higher Math., Tata McGraw-Hill, New York, 2006.
34.
O. Tenaillon, The utility of Fisher's geometric model in evolutionary genetics, Ann. Rev. Ecology Evolution Systematics, 45 (2014), pp. 179--201.
35.
L. S. Tsimring, H. Levine, and D. A. Kessler, RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 76 (1996), pp. 4440--4443.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 2420 - 2447
ISSN (online): 1095-712X

History

Submitted: 2 March 2020
Accepted: 3 September 2020
Published online: 19 November 2020

Keywords

  1. nonlocal
  2. partial differential equation
  3. adaptation
  4. moving optimum
  5. mutation
  6. generating functions

MSC codes

  1. 35Q92
  2. 35R09
  3. 45G10
  4. 45K05
  5. 45M05
  6. 92D10
  7. 92D15

Authors

Affiliations

Funding Information

Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-18-CE45-0019

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.