Methods and Algorithms for Scientific Computing

Fast Variable Density Node Generation on Parametric Surfaces with Application to Mesh-Free Methods

Domain discretization is considered a dominant part of solution procedures for solving partial differential equations. It is widely accepted that mesh generation is among the most cumbersome parts of the finite element method analysis and often requires human assistance, especially in complex three-dimensional geometries. When using alternative mesh-free approaches, the problem of mesh generation is simplified to the problem of positioning nodes, a much simpler task, though still not trivial. In this paper we present an algorithm for generation of nodes on arbitrary $d$-dimensional surfaces. This algorithm complements a recently published algorithm for generation of nodes in domain interiors and represents another step toward a fully automated dimension-independent solution procedure for solving partial differential equations. The proposed algorithm generates nodes with variable density on surfaces parameterized over arbitrary parametric domains in a dimension-independent way in $O(N\log N)$ time. It is also compared with existing algorithms for generation of surface nodes for mesh-free methods in terms of quality and execution time.

  • 1.  V. Bayona N. Flyer B. Fornberg and  G. A. Barnett , On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , J. Comput. Phys. , 332 ( 2017 ), pp. 257 -- 273 , https://doi.org/10.1016/j.jcp.2016.12.008. CrossrefISIGoogle Scholar

  • 2.  J. L. Blanco and P. K. Rai, nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with KD-trees, 2014, https://github.com/jlblancoc/nanoflann. Google Scholar

  • 3.  R. Bridson, Fast Poisson disk sampling in arbitrary dimensions, in SIGGRAPH sketches, 2007, p. 22, https://doi.org/10.1145/1278780.1278807. Google Scholar

  • 4.  J. C. Carr R. K. Beatson B. C. McCallum W. R. Fright T. J. McLennan and  T. J. Mitchell , Smooth surface reconstruction from noisy range data, in Proceedings of the 1st international conference on Computer graphics and interactive techniques in Australasia and South East Asia , ACM , 2003 , pp. 119 --ff. Google Scholar

  • 5.  Data announcement 88-MGG-02, Digital relief of the surface of the Earth, NOAA, National Geophysical Data Center, Boulder, Colorado, 1988, https://www.ngdc.noaa.gov/mgg/global/etopo5.html. Google Scholar

  • 6.  M. Depolli, G. Kosec, and J. Slak, Parallelizing a node positioning algorithm for meshless methods, in ParNum 2019 book of abstracts, 13th Parallel numerics workshop, Dubrovnik, Croatia, University of Zagreb, 2019, https://www.fsb.unizg.hr/parnum2019/abs_book_web.pdf. Google Scholar

  • 7.  P. Diaconis S. Holmes and  M. Shahshahani et al. , Sampling from a manifold, in Advances in Modern Statistical Theory and Applications: a Festschrift in Honor of Morris L. Eaton , Institute of Mathematical Statistics , 2013 , pp. 102 -- 125 . Google Scholar

  • 8.  U. Duh, G. Kosec, and J. Slak, Standalone implementation of the proposed algorithm, http://e6.ijs.si/medusa/static/PA.zip. Google Scholar

  • 9.  N. Flyer B. Fornberg V. Bayona and  G. A. Barnett , On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , J. Comput. Phys. , 321 ( 2016 ), pp. 21 -- 38 , https://doi.org/10.1016/j.jcp.2016.05.026. CrossrefISIGoogle Scholar

  • 10.  B. Fornberg and  N. Flyer , Fast generation of 2-D node distributions for mesh-free PDE discretizations , Comput. & Math. Appl. , 69 ( 2015 ), pp. 531 -- 544 , https://doi.org/10.1016/j.camwa.2015.01.009. CrossrefISIGoogle Scholar

  • 11.  X. D. Gu W. Zeng and  F. Luo . Yau, Numerical computation of surface conformal mappings , Comput. Methods Function Theory , 11 ( 2012 ), pp. 747 -- 787 , https://doi.org/10.1007/BF03321885. CrossrefISIGoogle Scholar

  • 12.  G. Guennebaud, B. Jacob, etal, Eigen v3, 2010, http://eigen.tuxfamily.org. Google Scholar

  • 13.  D. P. Hardin T. Michaels and  E. B. Saff , A comparison of popular point configurations on $s^2$ , Dolomites Res. Notes Approx. , 9 ( 2016 ). Google Scholar

  • 14.  D. P. Hardin and  E. B. Saff , Discretizing manifolds via minimum energy points , Not. AMS , 51 ( 2004 ), pp. 1186 -- 1194 . Google Scholar

  • 15.  N. P. Kopytov and E. A. Mityushov, Uniform distribution of points on hypersurfaces: Simulation of random equiprobable rotations, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp\textquotesingleyuternye Nauki, 25 (2015), pp. 29--35, https://doi.org/10.20537/vm150104. Google Scholar

  • 16.  G. Kosec , A local numerical solution of a fluid-flow problem on an irregular domain , Adv. Eng. Software , 120 ( 2018 ), pp. 36 -- 44 , https://doi.org/10.1016/j.advengsoft.2016.05.010. CrossrefISIGoogle Scholar

  • 17.  T. S. Lau S. H. Lo and  C. K. Lee , Generation of quadrilateral mesh over analytical curved surfaces , Finite Elements Anal. Design , 27 ( 1997 ), pp. 251 -- 272 , https://doi.org/10.1016/S0168-874X(97)00015-2. CrossrefISIGoogle Scholar

  • 18.  N. Litke A. Levin and  P. Schröder , Fitting subdivision surfaces, in Proceedings of the Conference on Visualization'01 , IEEE Computer Society , 2001 , pp. 319 -- 324 . Google Scholar

  • 19.  Medusa library, http://e6.ijs.si/medusa/. Google Scholar

  • 20.  A. W. Moore, An introductory tutorial on kd-trees, phdthesis 209, Computer Laboratory, University of Cambridge, 1991, https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf. Google Scholar

  • 21.  L. Piegl and W. Tiller, The NURBS book, Springer Science & Business Media, New York, 2012. Google Scholar

  • 22.  V. Shankar R. M. Kirby and  A. L. Fogelson , Robust node generation for meshfree discretizations on irregular domains and surfaces , SIAM J. Sci. Comput. , 40 ( 2018 ), pp. 2584 -- 2608 , https://doi.org/10.1137/17m114090x. LinkISIGoogle Scholar

  • 23.  K. Shimada and  D. C. Gossard , Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis , Computer Aided Geometric Design , 15 ( 1998 ), pp. 199 -- 222 , https://doi.org/10.1016/s0167-8396(97)00037-x. CrossrefISIGoogle Scholar

  • 24.  J. Slak and  G. Kosec , On generation of node distributions for meshless PDE discretizations , SIAM J. Sci. Comput. , 41 ( 2019 ), pp. A3202 -- A3229 , https://doi.org/10.1137/18M1231456. LinkISIGoogle Scholar

  • 25.  I. Stroud, Boundary representation modelling techniques, Springer Science & Business Media, New York, 2006. Google Scholar

  • 26.  G. Turk , Texture synthesis on surfaces, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques , ACM , 2001 , pp. 347 -- 354 , https://doi.org/10.1145/383259.383297. Google Scholar

  • 27.  K. van der Sande and B. Fornberg, Fast variable density 3-D node generation, preprint, arXiv:1906.00636 [math.NA], (2019). Google Scholar

  • 28.  O. Vlasiuk T. Michaels N. Flyer and  B. Fornberg , Fast high-dimensional node generation with variable density , Comput. Math. Appl. , 76 ( 2018 ), pp. 1739 -- 1757 , https://doi.org/10.1016/j.camwa.2018.07.026. CrossrefISIGoogle Scholar

  • 29.  H. Wendland, Scattered data approximation, vol. 17, Cambridge University Press, 2004. Google Scholar

  • 30.  R. Zamolo and  E. Nobile , Two algorithms for fast 2d node generation: Application to rbf meshless discretization of diffusion problems and image halftoning , Comput. Math. Appl. , 75 ( 2018 ), pp. 4305 -- 4321 , https://doi.org/10.1016/j.camwa.2018.03.031. CrossrefISIGoogle Scholar

  • 31.  H.-K. Zhao S. Osher and  R. Fedkiw , Fast surface reconstruction using the level set method , in Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer Vision, IEEE , 2001 , pp. 194 -- 201 . CrossrefGoogle Scholar