Abstract

We show that the expected solution operator of prototypical linear elliptic PDEs with random coefficients is well approximated by a computable sparse matrix. This result is based on a random localized orthogonal multiresolution decomposition of the solution space that allows both the sparse approximate inversion of the random operator represented in this basis as well as its stochastic averaging. The approximate expected solution operator can be interpreted in terms of classical Haar wavelets. When combined with a suitable sampling approach for the expectation, this construction leads to an efficient method for computing a sparse representation of the expected solution operator.

Keywords

  1. Monte Carlo
  2. random PDEs
  3. expected solution
  4. sparse approximation
  5. uncertainty quantification

MSC codes

  1. 65N30
  2. 65C05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Armstrong, T. Kuusi, and J.-C. Mourrat, The additive structure of elliptic homogenization, Invent. Math., 208 (2017), pp. 999--1154, https://doi.org/10.1007/s00222-016-0702-4.
2.
M. Bachmayr, A. Cohen, R. DeVore, and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: Lognormal coefficients, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 341--363, https://doi.org/10.1051/m2an/2016051.
3.
M. Bachmayr, A. Cohen, and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 321--339, https://doi.org/10.1051/m2an/2016045.
4.
J. Bourgain, On a homogenization problem, J. Stat. Phys., (2018), https://doi.org/10.1007/s10955-018-1981-5.
5.
A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist., 40 (2004), pp. 153--165, https://doi.org/10.1016/S0246-0203(03)00065-7.
6.
D. L. Brown, D. Gallistl, and D. Peterseim, Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations, in Meshfree Methods for Partial Differential equations VIII, Lect. Notes Comput. Sci. Eng. 115, Springer, Cham, Switzerland, 2017, pp. 85--115.
7.
J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal., 46 (2008), pp. 1519--1553, https://doi.org/10.1137/060666639.
8.
J. Dick, M. Feischl, and C. Schwab, Improved Efficiency of a Multi-Index FEM, preprint, https://arxiv.org/abs/1806.04159, 2018.
9.
J. Dick, R. N. Gantner, Q. T. Le Gia, and C. Schwab, Multilevel higher-order quasi-Monte Carlo Bayesian estimation, Math. Models Methods Appl. Sci., 27 (2017), pp. 953--995, https://doi.org/10.1142/S021820251750021X.
10.
J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens, and C. Schwab, Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs, SIAM J. Numer. Anal., 52 (2014), pp. 2676--2702, https://doi.org/10.1137/130943984.
11.
M. Duerinckx, A. Gloria, and M. Lemm, A remark on a surprising result by Bourgain in homogenization, Comm. Partial Differential Equations, 44 (2019), pp. 1345--1357, https://doi.org/10.1080/03605302.2019.1638934.
12.
M. Duerinckx, A. Gloria, and F. Otto, The Structure of Fluctuations in Stochastic Homogenization, preprint, arXiv 1602.01717 [math.AP] (2016).
13.
D. Elfverson, E. Georgoulis, and A. M\aalqvist, An adaptive discontinuous Galerkin multiscale method for elliptic problems, Multiscale Model. Simul., 11 (2013), pp. 747--765, https://doi.org/10.1137/120863162.
14.
D. Elfverson, E. H. Georgoulis, A. M\aalqvist, and D. Peterseim, Convergence of a discontinuous Galerkin multiscale method, SIAM J. Numer. Anal., 51 (2013), pp. 3351--3372, https://doi.org/10.1137/120900113.
15.
M. Feischl, F. Y. Kuo, and I. H. Sloan, Fast random field generation with $H$-matrices, Numer. Math., 140 (2018), pp. 639--676, https://doi.org/10.1007/s00211-018-0974-2.
16.
J. Fischer, D. Gallistl, and D. Peterseim, A Priori Error Analysis of a Numerical Stochastic Homogenization Method, preprint, https://arxiv.org/abs/1912.11646, (2019).
17.
D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering, Comput. Methods Appl. Mech. Engrg., 295 (2015), pp. 1--17.
18.
D. Gallistl and D. Peterseim, Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization, Multiscale Model. Simul., 15 (2017), pp. 1530--1552.
19.
D. Gallistl and D. Peterseim, Numerical stochastic homogenization by quasi-local effective diffusion tensors, Commun. Math. Sci., 17 (2019), pp. 637--651, https://doi.org/10.4310/CMS.2019.v17.n3.a3.
20.
M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617, https://doi.org/10.1287/opre.1070.0496.
21.
A. Gloria and F. Otto, The Corrector in Stochastic Homogenization: Optimal Rates, Stochastic Integrability, and Fluctuations, preprint, arXiv, 1510.08290 [math.AP] (2015).
22.
A. Gloria and F. Otto, Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS), 19 (2017), pp. 3489--3548.
23.
A.-L. Haji-Ali, F. Nobile, and R. Tempone, Multi-index Monte Carlo: When sparsity meets sampling, Numer. Math., 132 (2016), pp. 767--806, https://doi.org/10.1007/s00211-015-0734-5.
24.
P. Henning and A. Persson, A multiscale method for linear elasticity reducing Poisson locking, Comput. Methods Appl. Mech. Engrg., 310 (2016), pp. 156--171, https://doi.org/10.1016/j.cma.2016.06.034.
25.
P. Henning and D. Peterseim, Oversampling for the multiscale finite element method, Multiscale Model. Simul., 11 (2013), pp. 1149--1175, https://doi.org/10.1137/120900332.
26.
T. Y. Hou, D. Huang, K. C. Lam, and P. Zhang, An adaptive fast solver for a general class of positive definite matrices via energy decomposition, Multiscale Model. Simul., 16 (2018), pp. 615--678, https://doi.org/10.1137/17M1140686.
27.
T. Y. Hou and P. Zhang, Sparse operator compression of higher-order elliptic operators with rough coefficients, Res. Math. Sci., 4 (2017), Paper No. 24, 49, https://doi.org/10.1186/s40687-017-0113-1.
28.
J. Kim and M. Lemm, On the averaged Green's function of an elliptic equation with random coefficients, Arch. Ration. Mech. Anal., 234 (2019), pp. 1121--1166, https://doi.org/10.1007/s00205-019-01409-1.
29.
R. Kornhuber, D. Peterseim, and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition, Math. Comp., 87 (2018), pp. 2765--2774, https://doi.org/10.1090/mcom/3302.
30.
R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition, Multiscale Model. Simul., 14 (2016), pp. 1017--1036, https://doi.org/10.1137/15M1028510.
31.
S. M. Kozlov, The averaging of random operators, Mat. Sb. (N.S.), 109 (1979), pp. 188--202, 327.
32.
A. M\aalqvist and D. Peterseim, Localization of elliptic multiscale problems, Math. Comp., 83 (2014), pp. 2583--2603.
33.
H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games, SIAM Rev., 59 (2017), pp. 99--149, https://doi.org/10.1137/15M1013894.
34.
H. Owhadi and C. Scovel, Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization, Cambridge Monographs on Applied and Computational Mathematics 35, Cambridge University Press, Cambridge, 2019.
35.
H. Owhadi and L. Zhang, Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients, J. Comput. Phys., 347 (2017), pp. 99--128, https://doi.org/10.1016/j.jcp.2017.06.037.
36.
G. C. Papanicolaou and S. R. S. Varadhan, Boundary Value Problems with Rapidly Oscillating Random Coefficients, in Random Fields, Vols. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai 27, North-Holland, Amsterdam, 1981, pp. 835--873.
37.
D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors, in Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, eds., Springer International Publishing, Cham, Switzerland, 2016, pp. 343--369, https://doi.org/10.1007/978-3-319-41640-3_11.
38.
D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction, Math. Comp., 86 (2017), pp. 1005--1036, https://doi.org/10.1090/mcom/3156.
39.
D. Peterseim and S. Sauter, Finite elements for elliptic problems with highly varying, nonperiodic diffusion matrix, Multiscale Model. Simul., 10 (2012), pp. 665--695, https://doi.org/10.1137/10081839X.
40.
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718003.
41.
F. Schäfer, T. J. Sullivan, and H. Owhadi, Compression, Inversion, and Approximate PCA of Dense Kernel Matrices at Near-Linear Computational Complexity, preprint, https://arxiv.org/abs/1706.02205, (2017).
42.
P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge, 1997, https://doi.org/10.1017/CBO9780511623790.
43.
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992), pp. 581--613, https://doi.org/10.1137/1034116.
44.
H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer., 2 (1993), pp. 285--326, https://doi.org/10.1017/S0962492900002385.
45.
V. V. Yurinskiĭ, Averaging of symmetric diffusion in a random medium, Sib. Mat. Zh., 27 (1986), pp. 167--180, 215.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 3144 - 3164
ISSN (online): 1095-7170

History

Submitted: 16 March 2020
Accepted: 31 July 2020
Published online: 4 November 2020

Keywords

  1. Monte Carlo
  2. random PDEs
  3. expected solution
  4. sparse approximation
  5. uncertainty quantification

MSC codes

  1. 65N30
  2. 65C05

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : PE2143/2-2
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : CRC 1173

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media