Abstract

Determinantal point processes (DPPs) are probabilistic models of configurations that favor diversity or repulsion. They have recently gained influence in the machine learning community, mainly because of their ability to elegantly and efficiently subsample large sets of data. In this paper, we consider DPPs from an image processing perspective, meaning that the data we want to subsample are pixels or patches of a given image. To this end, our framework is discrete and finite. First, we adapt their basic definition and properties to DPPs defined on the pixels of an image, that we call determinantal pixel processes (DPixPs). We are mainly interested in the repulsion properties of such a process and we apply DPixPs to texture synthesis using shot noise models. Finally, we study DPPs on the set of patches of an image. Because of their repulsive property, DPPs provide a strong tool to subsample discrete distributions such as that of image patches.

Keywords

  1. determinantal point processes
  2. repulsion
  3. subsampling
  4. image
  5. pixels
  6. patches
  7. stationarity
  8. shot noise
  9. inference

MSC codes

  1. 60G55
  2. 62M40
  3. 68U10
  4. 94A08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. H. Affandi, E. B. Fox, R. P. Adams, and B. Taskar, Learning the parameters of determinantal point process kernels, in ICML, JMLR Workshop Conf. Proc., 32 (2014), pp. 1224--1232.
2.
A. Agarwal, A. Choromanska, and K. Choromanski, Notes on using Determinantal Point Processes for Clustering with Applications to Text Clustering, https://arxiv.org/abs/1410.6975 (2014).
3.
C. C. Aggarwal, Outlier Analysis, 2nd ed., Springer, Cham, Switzerland, 2016.
4.
F. Baccelli and B. Blaszczyszyn, Stochastic geometry and wireless networks: Vol. I Theory, Found. Trends Netw., 3 (2009), pp. 249--449, https://doi.org/10.1561/1300000006.
5.
R. Bardenet and M. Titsias, Inference for determinantal point processes without spectral knowledge, in Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds., Curran Associates, Red Hook, NY, 2015, pp. 3393--3401.
6.
S. Barthelmé, P.-O. Amblard, and N. Tremblay, Asymptotic equivalence of fixed-size and varying-size determinantal point processes, Bernoulli, 25 (2019), pp. 3555--3589, https://doi.org/10.3150/18-BEJ1102.
7.
A. Belhadji, R. Bardenet, and P. Chainais, A determinantal point process for column subset selection, J. Mach. Learn. Res., 21 (2020), pp. 1--62.
8.
C. Biscio and F. Lavancier, Quantifying repulsiveness of determinantal point processes, Bernoulli, 22 (2016), pp. 2001--2028, https://doi.org/10.3150/15-BEJ718.
9.
C. Biscio and F. Lavancier, Contrast estimation for parametric stationary determinantal point processes, Scand. J. Stat., 44 (2017), pp. 204--229.
10.
C. A. Biscio and J.-F. Coeurjolly, Standard and robust intensity parameter estimation for stationary determinantal point processes, Spat. Stat., 18 (2016), pp. 24--39, https://doi.org/10.1016/j.spasta.2016.04.007.
11.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
12.
V. Brunel, Learning signed determinantal point processes through the principal minor assignment problem, in Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3--8 December 2018, Montréal, Canada, 2018, pp. 7376--7385.
13.
V. Brunel, A. Moitra, P. Rigollet, and J. Urschel, Rates of estimation for determinantal point processes, in COLT, Proc. Mach. Learn. Res., (PMLR), 65 (2017), pp. 343--345.
14.
E. Celis, V. Keswani, D. Straszak, A. Deshpande, T. Kathuria, and N. Vishnoi, Fair and diverse DPP-based data summarization, in Proceedings of the 35th International Conference on Machine Learning, J. Dy and A. Krause, eds., Proc. Mach. Learn. Res. (PMLR), 80 (2018), pp. 716--725.
15.
W. Chen, Z. Yang, F. Cao, Y. Yan, M. Wang, C. Qing, and Y. Cheng, Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images, IET Image Process., 13 (2019), pp. 299--306, https://doi.org/10.1049/iet-ipr.2018.5419.
16.
M. Combescure, Block-circulant matrices with circulant blocks, Weil sums, and mutually unbiased bases. II. The prime power case, J. Math. Phys., 50 (2009), 032104.
17.
N. Cressie, Statistics for spatial data, Wiley, Hoboken, NJ, 2015.
18.
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising by sparse $3$-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), pp. 2080--2095.
19.
P. J. Davis, Circulant Matrices, American Mathematical Society, Providence, RI, 2013.
20.
S. Descamps, X. Descombes, A. Béchet, and J. Zerubia, Automatic flamingo detection using a multiple birth and death process, in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Piscataway, NJ, 2008, pp. 1113--1116.
21.
G. M. Engel and H. Schneider, Matrices diagonally similar to a symmetric matrix, Linear Algebra Appl., 29 (1980), pp. 131--138, https://doi.org/10.1016/0024-3795(80)90234-7.
22.
B. Galerne, Y. Gousseau, and J.-M. Morel, Random phase textures: Theory and synthesis, IEEE Trans. Image Process., 20 (2011), pp. 257--267, https://doi.org/10.1109/TIP.2010.2052822.
23.
B. Galerne, A. Lagae, S. Lefebvre, and G. Drettakis, Gabor noise by example, ACM Trans. Graph., 31 (2012), 73, https://doi.org/10.1145/2185520.2185569.
24.
B. Galerne, A. Leclaire, and L. Moisan, Texton noise, in Comput. Graph. Forum, 36 (2017), pp. 205--218.
25.
M. Gartrell, U. Paquet, and N. Koenigstein, Low-rank factorization of determinantal point processes, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17, AAAI Press, Palo Alto, CA, 2017, pp. 1912--1918.
26.
B. Gong, W. Chao, K. Grauman, and F. Sha, Diverse sequential subset selection for supervised video summarization, in Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, Quebec, Canada, Curran Associates, Red Hook, NY, 2014, pp. 2069--2077.
27.
D. J. Hartfiel and R. Loewy, On matrices having equal corresponding principal minors, Linear Algebra Appl., 58 (1984), pp. 147--167, https://doi.org/10.1016/0024-3795(84)90209-X.
28.
M. Held, P. Wolfe, and H. P. Crowder, Validation of subgradient optimization, Math. Program., 6 (1974), pp. 62--88, https://doi.org/10.1007/BF01580223.
29.
A. Houdard, C. Bouveyron, and J. Delon, High-dimensional mixture models for unsupervised image denoising (HDMI), SIAM J. Imaging Sci., 11 (2018), pp. 2815--2846.
30.
J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Determinantal processes and independence, Probab. Surv., 3 (2006), pp. 206--229.
31.
J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág, Zeros of Gaussian Analytic Functions and Determinantal Point Processes, Univ. Lect. Ser. 51, American Mathematical Society, Providence, RI, 2009.
32.
A. Kulesza, Learning with Determinantal Point Processes, PhD thesis, University of Pennsylvania, Philadelphia, 2012.
33.
A. Kulesza and B. Taskar, k-DPPs: Fixed-size determinantal point processes, in Proceedings of the 28th International Conference on Machine Learning, ICML'11, International Machine Learning Society, Madison, WI, 2011, pp. 1193--1200.
34.
A. Kulesza and B. Taskar, Learning determinantal point processes, in Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2011, pp. 419--427.
35.
A. Kulesza and B. Taskar, Determinantal point processes for machine learning, Found. Trends Mach. Learn., 5 (2012), pp. 123--286, https://doi.org/10.1561/2200000044.
36.
A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, Procedural noise using sparse Gabor convolution, ACM Trans. Graph., 28 (2009), pp. 54--64.
37.
C. Launay and A. Leclaire, Determinantal patch processes for texture synthesis, in GRETSI 2019, Lille, France, Aug 2019.
38.
F. Lavancier, J. Møller, and E. Rubak, Determinantal point process models and statistical inference, J. R. Stat. Soc. Ser. B Stat. Methodol., 77 (2015), pp. 853--877, https://www.jstor.org/stable/24775312.
39.
F. Lavancier, A. Poinas, and R. Waagepetersen, Adaptive estimating function inference for nonstationary determinantal point processes, Scand. J. Stat., to appear, https://doi.org/10.1111/sjos.12440.
40.
R. Loewy, Principal minors and diagonal similarity of matrices, Linear Algebra Appl., 78 (1986), pp. 23--64, https://doi.org/10.1016/0024-3795(86)90015-7.
41.
R. Lyons and J. E. Steif, Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination, Duke Math. J., 120 (2003), pp. 515--575, https://doi.org/10.1215/S0012-7094-03-12032-3.
42.
O. Macchi, The coincidence approach to stochastic point processes, Adv. Appl. Probab., 7 (1975), pp. 83--122.
43.
B. Mahasseni, M. Lam, and S. Todorovic, Unsupervised video summarization with adversarial LSTM networks., in CVPR, IEEE Computer Society, Los Alamitos, CA, 2017, pp. 2982--2991.
44.
J. Møller and R. Waagepetersen, Statistical Inference and Simulation for Spatial Point Process, Mongr. Statist. Appl. Probab., 100, Chapman and Hall/CRC, Boca Raton, FL, 2003, https://doi.org/10.1201/9780203496930.
45.
B. J. Olson, S. W. Shaw, C. Shi, C. Pierre, and R. G. Parker, Circulant matrices and their application to vibration analysis, Appl. Mech. Rev., 66 (2014), 040803.
46.
G. Pagès, Introduction to vector quantization and its applications for numerics, ESAIM Proc. Surveys, 48 (2015), pp. 29--79, https://doi.org/10.1051/proc/201448002.
47.
G. Perrin, X. Descombes, and J. Zerubia, Point Processes in Forestry: An Application to Tree Crown Detection, Research report RR-5544, INRIA, 2006.
48.
A. Poinas, B. Delyon, and F. Lavancier, Mixing properties and central limit theorem for associated point processes, Bernoulli, 25 (2019), pp. 1724--1754.
49.
J. Rising, A. Kulesza, and B. Taskar, An efficient algorithm for the symmetric principal minor assignment problem, Linear Algebra Appl., 473 (2015), pp. 126--144.
50.
J. Salmon and Y. Strozecki, From patches to pixels in non-local methods: Weighted-average reprojection, in 2010 IEEE International Conference on Image Processing, IEEE, Piscataway, NJ, 2010, pp. 1929--1932.
51.
B. D. Saunders and H. Schneider, Flows on graphs applied to diagonal similarity and diagonal equivalence for matrices, Discrete Math., 24 (1978), pp. 205--220, https://doi.org/10.1016/0012-365X(78)90200-5.
52.
T. Shirai and Y. Takahashi, Fermion process and Fredholm determinant, in Proceedings of the Second ISAAC Congress, Springer, Boston, MA, 2000, pp. 15--23, https://doi.org/10.1007/978-1-4613-0269-8_3.
53.
T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal., 205 (2003), pp. 414--463.
54.
T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties, Ann. Probab., 31 (2003), pp. 1533--1564, https://doi.org/10.1214/aop/1055425789.
55.
A. Soshnikov, Determinantal random point fields, Russian Math. Surveys, (2000), pp. 923--975.
56.
A. Soshnikov, Gaussian limit for determinantal random point fields, Ann. Probab., 30 (2002), pp. 171--187.
57.
M. Stevens, Equivalent Symmetric Kernels of Determinantal Point Processes, arXiv e-prints, https://arxiv.org/abs/1905.08162, 2019.
58.
N. Tremblay, S. Barthelmé, and P.-O. Amblard, Optimized Algorithms to Sample Determinantal Point Processes, CoRR, abs/1802.08471 https://arxiv.org/pdf/1802.08471.pdf, 2018.
59.
N. Tremblay, S. Barthelmé, and P.-O. Amblard, Determinantal point processes for coresets, J. Mach. Learn. Res., (2019).
60.
J. Urschel, V. Brunel, A. Moitra, and P. Rigollet, Learning determinantal point processes with moments and cycles, in ICML, Proc. Mach. Learn. Res. PMLR 70, 2017, pp. 3511--3520.
61.
J. J. van Wijk, Spot noise texture synthesis for data visualization, in SIGGRAPH '91, New York, 1991, ACM, pp. 309--318, https://doi.org/10.1145/122718.122751.
62.
M. Wilhelm, A. Ramanathan, A. Bonomo, S. Jain, E. H. Chi, and J. Gillenwater, Practical diversified recommendations on Youtube with determinantal point processes, in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM '18, New York, NY, 2018, ACM, pp. 2165--2173, https://doi.org/10.1145/3269206.3272018.
63.
K. Zhang, W. Chao, F. Sha, and K. Grauman, Video summarization with long short-term memory, in Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11--14, 2016, Proceedings, Part VII, 2016, pp. 766--782, https://doi.org/10.1007/978-3-319-46478-7_47.
64.
D. Zoran and Y. Weiss, From learning models of natural image patches to whole image restoration, in Proceedings of the 2011 International Conference on Computer Vision, ICCV '11, 2011, IEEE Computer Society, pp. 479--486, https://doi.org/10.1109/ICCV.2011.6126278.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 304 - 348
ISSN (online): 1936-4954

History

Submitted: 26 March 2020
Accepted: 8 September 2020
Published online: 1 March 2021

Keywords

  1. determinantal point processes
  2. repulsion
  3. subsampling
  4. image
  5. pixels
  6. patches
  7. stationarity
  8. shot noise
  9. inference

MSC codes

  1. 60G55
  2. 62M40
  3. 68U10
  4. 94A08

Authors

Affiliations

Funding Information

Region Ile-de-France

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.