Abstract

In this contribution, we study the existence and uniqueness of nonlocal transport equations. The term “nonlocal” refers to the fact that the flux function's derivative will be integrated over a neighborhood of the corresponding space-time coordinate. We will demonstrate existence and uniqueness of weak solutions for $TV\cap L^{\infty}$ initial datum and provide stability estimates. Moreover, we investigate the convergence of the nonlocal transport equation to the corresponding local conservation law when the nonlocal reach tends to zero. For quadratic flux functions (including Burgers' equation and the Lighthill--Whitham--Richards traffic flow model), we establish convergence to a weak solution of the local conservation law for “symmetric” nonlocal terms. For specific quasi-convex and quasi-concave initial datum we even obtain convergence to the local entropy solution. We demonstrate that for “nonsymmetric” nonlocal approximations the solution cannot converge to the entropy solution or even a weak solution. We conclude with additional numerical examples showing that convergence appears to hold for more general initial datum.

Keywords

  1. nonlocal transport equations
  2. nonlocal advection equation
  3. nonlocal balance laws
  4. nonlocal conservation laws
  5. convergence nonlocal to local
  6. entropy solution

MSC codes

  1. 35L03
  2. 35L65
  3. 35L67

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. A\u\izerman, E. Bredihina, S. Černikov, F. Gantmaher, I. Gelfand, S. Gelfer, D. Harazov, M. Kadec, J. Korobe\u\inik, M. Kre\u\in, O. Ole\u\inik, I. Pyatecki\u\i-Šapiro, M. Subhankulov, K. Temko, and A. Turecki\u\i, Seventeen Papers on Analysis, American Mathematical Society, Providence, RI, 1963.
2.
P. Amorim, R. Colombo, and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 19--37.
3.
D. Armbruster, D. Marthaler, C. Ringhofer, K. Kempf, and T.-C. Jo, A continuum model for a re-entrant factory, Oper. Res., 54 (2006), pp. 933--950, http://dblp.uni-trier.de/db/journals/ior/ior54.html#ArmbrusterMRKJ06.
4.
G. Baker, X. Li, and A. Morlet, Analytic structure of two \textup1d-transport equations with nonlocal fluxes, Phys. D, 91 (1996), pp. 349--375, https://doi.org/10.1016/0167-2789(95)00271-5.
5.
P. Balodis and A. Córdoba, An inequality for riesz transforms implying blow-up for some nonlinear and nonlocal transport equations, Adv. Math., 214 (2007), pp. 1--39, https://doi.org/10.1016/j.aim.2006.07.021.
6.
S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), pp. 217--241.
7.
A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford University Press, Oxford, 2000.
8.
A. Bressan and W. Shen, On Traffic Flow with Nonlocal Flux: A Relaxation Representation, preprint, https://arxiv.org/abs/1911.03636, 2019.
9.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
10.
F. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 163--180.
11.
M. Colombo, G. Crippa, and L. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Ration. Mech. Anal., 233 (2019), pp. 1131--1167.
12.
M. Colombo, G. Crippa, and L. Spinolo, Local Limit of Nonlocal Traffic Models: Convergence Results and Total Variation Blow-up, preprint, https://arxiv.org/abs/1808.03529, 2019.
13.
R. Colombo, M. Garavello, and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023.
14.
A. Córdoba, D. Córdoba, and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. (2), 162 (2005), pp. 1377--1389.
15.
J.-M. Coron, M. Kawski, and Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), pp. 1337--1359, https://doi.org/10.3934/dcdsb.2010.14.1337.
16.
J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity, J. Differential Equations, 252 (2012), pp. 181--201.
17.
C. De Lellis, P. Gwiazda, and A. Świerczewska-Gwiazda, Transport equations with integral terms: existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 55 (2016), 128.
18.
D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport, Phys. Plasmas, 13 (2006), 082308, https://doi.org/10.1063/1.2336114.
19.
M. D. Francesco, S. Fagioli, and E. Radici, Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, J. Differential Equations, 266 (2019), pp. 2830--2868.
20.
M. Gugat, A. Keimer, G. Leugering, and Z. Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Netw. Heterog. Media, 10 (2015), pp. 749--785, https://doi.org/10.3934/nhm.2015.10.749.
21.
M. Haderlein, D. Segets, M. Gröschel, L. Pflug, G. Leugering, and W. Peukert, FIMOR: An efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis, Chem. Eng. J., 260 (2015), pp. 706--715.
22.
J. Hale, Ordinary Differential Equations, R. E. Krieger Pub., Huntington, NY, 1980.
23.
J. Jahn, Introduction to the Theory of Nonlinear Optimization, 3rd ed., Springer, Berlin, 2007.
24.
A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), pp. 4023--4069.
25.
A. Keimer and L. Pflug, On approximation of local conservation laws by nonlocal conservation laws, J. Math. Anal. Appl., 475 (2019), pp. 1927--1955.
26.
A. Keimer, L. Pflug, and M. Spinola, Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), pp. 18--55, https://doi.org/10.1016/j.jmaa.2018.05.013.
27.
A. Keimer, L. Pflug, and M. Spinola, Nonlocal balance laws: Theory of convergence for nondissipative numerical schemes, submitted.
28.
A. Keimer, L. Pflug, and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., 50 (2018), pp. 6271--6306, https://doi.org/10.1137/18M119817X.
29.
S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, 2nd ed., Birkhäuser Boston, Boston, 2002.
30.
G. Leoni, A First Course in Sobolev Spaces, Grad. Stud. Math. 105, American Mathematical Society, Providence, RI, 2009.
31.
B. Piccoli, N. Duteil, and E. Trélat, Sparse control of Hegselmann--Krause models: Black hole and declustering, SIAM J. Control Optim., 57 (2019), pp. 2628--2659, https://doi.org/10.1137/18M1168911.
32.
B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: Convergence of numerical schemes, Acta Appl. Math., 124 (2013), pp. 73--105.
33.
B. Piccoli, F. Rossi, and M. Tournus, A Wasserstein Norm for Signed Measures, with Application to Nonlocal Transport Equation with Source Term, preprint, https://arxiv.org/abs/1910.05105, 2019.
34.
V. Skorych, M. Dosta, E.-U. Hartge, and S. Heinrich, Novel system for dynamic flowsheet simulation of solids processes, Powder Technology, 314 (2017), pp. 665--679.
35.
B. Uhrin, Some remarks about the convolution of unimodal functions, Ann. Probab., 12 (1984), pp. 640--645.
36.
W. Walter, Differential and Integral Inequalities, Springer-Verlag, Berlin, New York, 1970.
37.
E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics, Appl. Math. Sci. 108, Springer-Verlag, New York, 1995.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 5500 - 5532
ISSN (online): 1095-7154

History

Submitted: 14 April 2020
Accepted: 13 August 2020
Published online: 10 November 2020

Keywords

  1. nonlocal transport equations
  2. nonlocal advection equation
  3. nonlocal balance laws
  4. nonlocal conservation laws
  5. convergence nonlocal to local
  6. entropy solution

MSC codes

  1. 35L03
  2. 35L65
  3. 35L67

Authors

Affiliations

Funding Information

Bavaria California Technology Center
Philippine Commission on Higher Education
Miller Institute
Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-15-CE23-0007
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : 416229255 - SFB1411

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media