Abstract

The error threshold of a one-parameter family of quantum channels is defined as the largest noise level such that the quantum capacity of the channel remains positive. This in turn guarantees the existence of a quantum error correction code for noise modeled by that channel. Discretizing the single-qubit errors leads to the important family of Pauli quantum channels; curiously, multipartite entangled states can increase the threshold of these channels beyond the so-called hashing bound, an effect termed superadditivity of coherent information. In this work, we divide the simplex of Pauli channels into one-parameter families and compute numerical lower bounds on their error thresholds. We find substantial increases of error thresholds relative to the hashing bound for large regions in the Pauli simplex corresponding to biased noise, which is a realistic noise model in promising quantum computing architectures. The error thresholds are computed on the family of graph states, a special type of stabilizer state. In order to determine the coherent information of a graph state, we devise an algorithm that exploits the symmetries of the underlying graph, resulting in a substantial computational speed-up. This algorithm uses tools from computational group theory and allows us to consider symmetric graph states on a large number of vertices. Our algorithm works particularly well for repetition codes and concatenated repetition codes (or cat codes), for which our results provide the first comprehensive study of superadditivity for arbitrary Pauli channels. In addition, we identify a novel family of quantum codes based on tree graphs. The error thresholds of these tree graph states outperform repetition and cat codes in large regions of the Pauli simplex, and hence form a new code family with desirable error correction properties.

Keywords

  1. quantum information theory
  2. quantum channel capacities
  3. computational group theory
  4. quantum error correction
  5. error thresholds
  6. group actions

MSC codes

  1. 81P45
  2. 81P70
  3. 94A40
  4. 05E18

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
OEIS Foundation, A001349, The On-Line Encyclopedia of Integer Sequences, 2019, https://oeis.org/A001349.
2.
P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M. Steffen, and B. M. Terhal, Fault-tolerant computing with biased-noise superconducting qubits: A case study, New J. Phys., 11 (2009), 013061, https://doi.org/10.1088/1367-2630/11/1/013061.
3.
P. Aliferis and J. Preskill, Fault-tolerant quantum computation against biased noise, Phys. Rev. A, 78 (2008), 052331, https://doi.org/10.1103/PhysRevA.78.052331.
5.
J. Bausch and F. Leditzky, Quantum codes from neural networks, New J. Phys., 22 (2020), 023005, https://doi.org/10.1088/1367-2630/ab6cdd.
6.
C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, IEEE, New York, 1984.
7.
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A, 54 (1996), pp. 3824--3851, https://doi.org/10.1103/PhysRevA.54.3824.
8.
N. Borie, Generating tuples of integers modulo the action of a permutation group and applications, Discrete Math. Theor. Comput. Sci., (2013), pp. 767--778; also available online from https://arxiv.org/abs/1211.6261.
9.
H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett., 86 (2001), pp. 910--913, https://doi.org/10.1103/PhysRevLett.86.910.
10.
D. Bruß, Optimal eavesdropping in quantum cryptography with six states, Phys. Rev. Lett., 81 (1998), pp. 3018--3021, https://doi.org/10.1103/PhysRevLett.81.3018.
11.
G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science, 355 (2017), pp. 602--606, https://doi.org/10.1126/science.aag2302.
12.
J. Chen, Z. Ji, D. Kribs, N. Lütkenhaus, and B. Zeng, Symmetric extension of two-qubit states, Phys. Rev. A, 90 (2014), 032318, https://doi.org/10.1103/PhysRevA.90.032318.
13.
X.-Y. Chen and L.-Z. Jiang, Graph-state basis for pauli channels, Phys. Rev. A, 83 (2011), 052316, https://doi.org/10.1103/PhysRevA.83.052316.
14.
L. Chirolli and G. Burkard, Decoherence in solid-state qubits, Adv. Phys., 57 (2008), pp. 225--285, https://doi.org/10.1080/00018730802218067.
15.
T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García, and S. Strelchuk, Unbounded number of channel uses may be required to detect quantum capacity, Nat. Commun., 6 (2015), 6739, https://doi.org/10.1038/ncomms7739.
16.
I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inform. Theory, 51 (2005), pp. 44--55, https://doi.org/10.1109/TIT.2004.839515.
17.
I. Devetak and P. W. Shor, The capacity of a quantum channel for simultaneous transmission of classical and quantum information, Comm. Math. Phys., 256 (2005), pp. 287--303, https://doi.org/10.1007/s00220-005-1317-6.
18.
R. Diestel, Graph Theory, 4 ed., Springer, Berlin, 2010.
19.
D. P. DiVincenzo, P. W. Shor, and J. A. Smolin, Quantum-channel capacity of very noisy channels, Phys. Rev. A, 57 (1998), 830, https://doi.org/10.1103/PhysRevA.57.830.
20.
M. B. Elliott, B. Eastin, and C. M. Caves, Graphical description of the action of Clifford operators on stabilizer states, Phys. Rev. A, 77 (2008), 042307, https://doi.org/10.1103/PhysRevA.77.042307.
21.
J. Fern and K. B. Whaley, Lower bounds on the nonzero capacity of pauli channels, Phys. Rev. A, 78 (2008), 062335, https://doi.org/10.1103/PhysRevA.78.062335.
22.
K. Fujii and Y. Tokunaga, Error and loss tolerances of surface codes with general lattice structures, Phys. Rev. A, 86 (2012), 020303, https://doi.org/10.1103/PhysRevA.86.020303.
23.
D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology, 1997; also available online from https://arxiv.org/abs/quant-ph/9705052.
24.
S. G. Hartke and A. J. Radcliffe, McKay's canonical graph labeling algorithm, Contemp. Math., 479 (2009), pp. 99--111, https://doi.org/10.1090/conm/479/09345.
25.
P. Hayden, M. Horodecki, A. Winter, and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn., 15 (2008), pp. 7--19, https://doi.org/10.1142/S1230161208000043.
26.
M. Hein, W. Dür, and H. J. Briegel, Entanglement properties of multipartite entangled states under the influence of decoherence, Phys. Rev. A, 71 (2005), 032350, https://doi.org/10.1103/PhysRevA.71.032350.
27.
M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel, Entanglement in Graph States and its Applications, preprint, https://arxiv.org/abs/quant-ph/0602096, 2006.
28.
M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A, 69 (2004), 062311, https://doi.org/10.1103/PhysRevA.69.062311.
29.
W. Helwig, Multipartite Entanglement: Transformations, Quantum Secret Sharing, Quantum Error Correction, Ph.D. thesis, University of Toronto, 2014.
30.
T. B. Jackson, Degenerate Codes and Capacities of Quantum Channels, PhD thesis, Department of Mathematics and Statistics, University of Guelph, 2017; also available online from https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10362.
31.
C. Jefferson, M. Pfeiffer, R. Waldecker, and E. Jonauskyte, GAP Package, Images, 2019, http://gap-packages.github.io/images.
32.
T. Junttila and P. Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs, in Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Workshop on Analytic Algorithms and Combinatorics, D. Applegate, G. S. Brodal, D. Panario, and R. Sedgewick, eds., SIAM, Philadelphia, 2007, pp. 135--149.
33.
A. Kerber, Applied Finite Group Actions, Algorithms Combin., 19, Springer, Berlin, 1999, https://doi.org/10.1007/978-3-662-11167-3.
34.
O. Kern and J. M. Renes, Improved one-way rates for bb84 and 6-state protocols, Quantum Inf. Comput., 8 (2008), pp. 756--772, http://dl.acm.org/citation.cfm?id=2017011.2017017.
35.
F. Leditzky, MATLAB Code for Algorithm 1, 2019, https://github.com/felixled/graph-states-coherent-info.
36.
F. Leditzky, D. Leung, and G. Smith, Dephrasure channel and superadditivity of coherent information, Phys. Rev. Lett., 121 (2018), 160501, https://doi.org/10.1103/PhysRevLett.121.160501.
37.
F. Leditzky, D. Leung, and G. Smith, Quantum and private capacities of low-noise channels, Phys. Rev. Lett., 120 (2018), 160503, https://doi.org/10.1103/PhysRevLett.120.160503.
38.
D. Leung and G. Smith, Continuity of quantum channel capacities, Comm. Math. Phys., 292 (2009), pp. 201--215, https://arxiv.org/abs/0810.4931.
39.
G. Lindblad, Completely positive maps and entropy inequalities, Comm. Math. Phys., 40 (1975), pp. 147--151.
40.
S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A, 55 (1997), 1613, https://doi.org/10.1103/PhysRevA.55.1613; also available online from https://arxiv.org/abs/quant-ph/9604015.
41.
H.-K. Lo, Proof of unconditional security of six-state quatum key distribution scheme, Quantum Inf. Comput., 1 (2001), pp. 81--94, http://dl.acm.org/citation.cfm?id=2011333.2011337.
42.
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput., 60 (2014), pp. 94--112, https://doi.org/10.1016/j.jsc.2013.09.003.
43.
C. J. Myatt, B. E. King, Q. A. Turchette, C. A. Sackett, D. Kielpinski, W. M. Itano, C. W. Monroe, and D. J. Wineland, Decoherence of quantum superpositions through coupling to engineered reservoirs, Nature, 403 (2000), pp. 269--273.
44.
G. O. Myhr and N. Lütkenhaus, Spectrum conditions for symmetric extendible states, Phys. Rev. A, 79 (2009), 062307, https://doi.org/10.1103/PhysRevA.79.062307.
45.
M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000.
46.
D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, Quantum computations on a topologically encoded qubit, Science, 345 (2014), pp. 302--305, https://doi.org/10.1126/science.1253742.
47.
C. Ospelkaus, C. Langer, J. Amini, K. Brown, D. Leibfried, and D. Wineland, Trapped-Ion Quantum Logic Gates Based on Oscillating Magnetic Fields, Phys. Rev. Lett., 101 (2008), 090502, https://doi.org/10.1103/PhysRevLett.101.090502.
48.
C. Paul-Paddock, Degradable and Antidegradable Qubit Channels, Master's thesis, Department of Mathematics and Statistics, University of Guelph, 2016, https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9970.
49.
J. Preskill, Quantum computing in the NISQ era and beyond, Quantum, 2 (2018), 79, https://doi.org/10.22331/q-2018-08-06-79.
50.
B. Schumacher, Sending entanglement through noisy quantum channels, Phys. Rev. A, 54 (1996), 2614, https://doi.org/10.1103/PhysRevA.54.2614.
51.
B. Schumacher and M. A. Nielsen, Quantum data processing and error correction, Phys. Rev. A, 54 (1996), 2629, https://doi.org/10.1103/PhysRevA.54.2629.
52.
Á. Seress, Permutation Group Algorithms, Cambridge University Press, Cambridge, 2003, https://doi.org/10.1017/CBO9780511546549.
53.
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), pp. 379--423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
54.
P. Shor and J. A. Smolin, Quantum Error-correcting Codes Need Not Completely Reveal the Error Syndrome, preprint, 1996, https://arxiv.org/abs/quant-ph/9604006.
55.
P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52 (1995), pp. R2493--R249.
56.
P. W. Shor, The quantum channel capacity and coherent information, in Proceedings of the MSRI Workshop on Quantum Computation, 2002.
57.
P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 85 (2000), pp. 441--444, https://doi.org/10.1103/PhysRevLett.85.441.
58.
M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet-triplet qubits, Science, 336 (2012), pp. 202--205, https://doi.org/10.1126/science.1217692.
59.
G. Smith, J. M. Renes, and J. A. Smolin, Structured codes improve the bennett-brassard-84 quantum key rate, Phys. Rev. Lett., 100 (2008), 170502, https://doi.org/10.1103/PhysRevLett.100.170502.
60.
G. Smith and J. A. Smolin, Degenerate quantum codes for pauli channels, Phys. Rev. Lett., 98 (2007), 030501, https://doi.org/10.1103/PhysRevLett.98.030501.
61.
A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett., 77 (1996), pp. 793--797, https://doi.org/10.1103/PhysRevLett.77.793.
62.
R. J. Trudeau, Introduction to Graph Theory, Dover, New York, 1993.
63.
D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Ultrahigh Error Threshold for Surface Codes with Biased Noise, Phys. Rev. Lett., 120 (2018), 050505, https://doi.org/10.1103/PhysRevLett.120.050505.
64.
Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, and D. J. Wineland, Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs, Phys. Rev. A, 62 (2000), 053807, https://doi.org/10.1103/PhysRevA.62.053807.
65.
M. Van den Nest, J. Dehaene, and B. De Moor, Graphical description of the action of local clifford transformations on graph states, Phys. Rev. A, 69 (2004), 022316, https://doi.org/10.1103/PhysRevA.69.022316.
66.
J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A, 94 (2016), 52325, https://doi.org/10.1103/PhysRevA.94.052325.
67.
W.-J. Zou, Y.-H. Li, S.-C. Wang, Y. Cao, J.-G. Ren, J. Yin, C.-Z. Peng, X.-B. Wang, and J.-W. Pan, Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal, Phys. Rev. A, 95 (2017), 042342, https://doi.org/10.1103/PhysRevA.95.042342.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 1410 - 1460
ISSN (online): 1095-7111

History

Submitted: 20 May 2020
Accepted: 30 March 2021
Published online: 26 August 2021

Keywords

  1. quantum information theory
  2. quantum channel capacities
  3. computational group theory
  4. quantum error correction
  5. error thresholds
  6. group actions

MSC codes

  1. 81P45
  2. 81P70
  3. 94A40
  4. 05E18

Authors

Affiliations

Funding Information

AI Grant
National Science Foundation https://doi.org/10.13039/100000001 : PHY 1734006
Pembroke College, University of Oxford https://doi.org/10.13039/100010355

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media