Abstract

We discuss the possibility of learning a data-driven explicit model correction for inverse problems and whether such a model correction can be used within a variational framework to obtain regularized reconstructions. This paper discusses the conceptual difficulty of learning such a forward model correction and proceeds to present a possible solution as a forward-adjoint correction that explicitly corrects in both data and solution spaces. We then derive conditions under which solutions to the variational problem with a learned correction converge to solutions obtained with the correct operator. The proposed approach is evaluated on an application to limited view photoacoustic tomography and compared to the established framework of the Bayesian approximation error method.

Keywords

  1. model correction
  2. inverse problems
  3. operator learning
  4. deep learning
  5. variational methods
  6. photoacoustic tomography

MSC codes

  1. 65K10
  2. 65F22
  3. 94A08
  4. 47A52

Formats available

You can view the full content in the following formats:

References

1.
J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), 124007.
2.
J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Trans. Med. Imaging, 37 (2018), pp. 1322--1332.
3.
S. Antholzer, M. Haltmeier, and J. Schwab, Deep learning for photoacoustic tomography from sparse data, Inverse Prob. Sci. Eng., 27 (2019), pp. 987--1005.
4.
S. Arridge, J. Kaipio, V. Kolehmainen, M. Schweiger, E. Somersalo, T. Tarvainen, and M. Vauhkonen, Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Problems, 22 (2006), pp. 175--195.
5.
S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numer., 28 (2019), pp. 1--174.
6.
P. Beard, Biomedical photoacoustic imaging, Interface Focus, 1 (2011), pp. 602--631.
7.
Y. E. Boink and C. Brune, Learned SVD: Solving Inverse Problems via Hybrid Autoencoding, preprint, https://arxiv.org/abs/1912.10840 (2019).
8.
L. Borcea, V. Druskin, A. Mamanov, S. Moskow, and M. Zaslvsky, Reduced order models for spectral domain inversion: Embedding into the continuous problem and generation of internal data, Inverse Problems, 36 (2020), 055010.
9.
T. A. Bubba, G. Kutyniok, M. Lassas, M. Maerz, W. Samek, S. Siltanen, and V. Srinivasan, Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Problems, 35 (2019), 064002.
10.
M. Burger, Y. Korolev, and J. Rasch, Convergence rates and structure of solutions of inverse problems with imperfect forward models, Inverse Problems, 35 (2019), 024006.
11.
B. Cox and P. Beard, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods, J. Acoust. Soc. Amer., 117 (2005), pp. 3616--3627.
12.
N. Davoudi, X. L. Deán-Ben, and D. Razansky, Deep learning optoacoustic tomography with sparse data, Nature Mach. Intell., 1 (2019), pp. 453--460.
13.
H. Egger, J.-F. Pietschmann, and M. Schlottbom, Identification of chemotaxis models with volume-filling, SIAM J. Appl. Math., 75 (2015), pp. 275--288.
14.
R. W. Freund, Model reduction methods based on Krylov subspaces, Acta Numer., 12 (2003), pp. 267--319.
15.
S. Guan, A. Khan, S. Sikdar, and P. Chitnis, Fully dense UNet for $2$D sparse photoacoustic tomography artifact removal, IEEE J. Biomed. Health Inform., 24 (2020), pp. 568--576.
16.
S. J. Hamilton and A. Hauptmann, Deep D-bar: Real-time electrical impedance tomography imaging with deep neural networks, IEEE Trans. Med. Imaging, 37 (2018), pp. 2367--2377.
17.
K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll, Learning a variational network for reconstruction of accelerated MRI data, Magn. Reson. Med., 79 (2018), pp. 3055--3071.
18.
A. Hauptmann, J. Adler, S. Arridge, and O. Öktem, Multi-scale learned iterative reconstruction, IEEE Trans. Comput. Imaging, to appear.
19.
A. Hauptmann, S. Arridge, F. Lucka, V. Muthurangu, and J. A. Steeden, Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning--proof of concept in congenital heart disease, Magn. Reson. Med., 81 (2019), pp. 1143--1156.
20.
A. Hauptmann, B. Cox, F. Lucka, N. Huynh, M. Betcke, P. Beard, and S. Arridge, Approximate k-space models and deep learning for fast photoacoustic reconstruction, in International Workshop on Machine Learning for Medical Image Reconstruction, Springer, Cham, Switzerland, 2018, pp. 103--111.
21.
A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, S. Ourselin, and S. Arridge, Model based learning for accelerated, limited-view 3d photoacoustic tomography, IEEE Trans. Med. Imaging, 39 (2018), pp. 1382--1393.
22.
K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Image Process., 26 (2017), pp. 4509--4522.
23.
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2005.
24.
J. Kaipio and E. Somersalo, Statistical inverse problems: Discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198 (2007), pp. 493--504.
25.
E. Kang, J. Min, and J. C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Med. Phys., 44 (2017), pp. e360--e375.
26.
M. C. Kennedy and A. O'Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425--464.
27.
E. Kobler, A. Effland, K. Kunisch, and T. Pock, Total deep variation for linear inverse problems, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Piscataway, NJ, 2020, pp. 7549--7558.
28.
K. P. Koestli, M. Frenz, H. Bebie, and H. P. Weber, Temporal backward projection of optoacoustic pressure transients using Fourier transform methods, Phys. Med. Biol., 46 (2001), pp. 1863--1872.
29.
Y. Korolev and J. Lellmann, Image reconstruction with imperfect forward models and applications in deblurring, SIAM J. Imaging Sci., 11 (2018), pp. 197--218.
30.
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math., 19 (2008), pp. 191--224.
31.
H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, Nett: Solving inverse problems with deep neural networks, Inverse Problems, 36 (2020), 065005.
32.
A. Lorz, J.-F. Pietschmann, and M. Schlottbom, Parameter identification in a structured population model, Inverse problems, 35 (2019), 095008.
33.
S. Lunz, O. Öktem, and C.-B. Schönlieb, Adversarial regularizers in inverse problems, in Advances in Neural Information Processing Systems, Curran Associates, Red Hook, NY, 2018, pp. 8507--8516.
34.
O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, Switzerland, 2015, pp. 234--241.
35.
T. Sahlström, A. Pulkkinen, J. Tick, J. Leskinen, and T. Tarvainen, Modeling of errors due to uncertainties in ultrasound sensor locations in photoacoustic tomography, IEEE Trans. Med. Imaging, 39 (2020), pp. 2140--2150.
36.
J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, A deep cascade of convolutional neural networks for dynamic MR image reconstruction, IEEE Trans. Med. Imaging, 37 (2017), pp. 491--503.
37.
J. Schwab, S. Antholzer, and M. Haltmeier, Deep null space learning for inverse problems: Convergence analysis and rates, Inverse Problems, 35 (2019), 025008.
38.
J. H. Siewerdsen and D. A. Jaffray, Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of X-ray scatter, Med. Phys., 28 (2001), pp. 220--231.
39.
D. Smyl and D. Liu, Less is often more: Applied inverse problems using hp-forward models, J. Comput. Phys., 399 (2019), 108949.
40.
D. Smyl, T. N. Tallman, J. A. Black, A. Hauptmann, and D. Liu, Learning and Correcting Non-Gaussian Model Errors, preprint, https://arxiv.org/abs/2005.14592 (2020).
41.
T. Tarvainen, A. Pulkkinen, B. T. Cox, J. P. Kaipio, and S. R. Arridge, Bayesian image reconstruction in quantitative photoacoustic tomography, IEEE Trans. Med. Imaging, 32 (2013), pp. 2287--2298.
42.
B. E. Treeby and B. T. Cox, k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15 (2010), 021314.
43.
B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method., J. Acoust. Soc. Amer., 131 (2012), pp. 4324--4336, https://doi.org/10.1121/1.4712021.
44.
V. Vishnevskiy, R. Rau, and O. Goksel, Deep variational networks with exponential weighting for learning computed tomography, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, Switzerland, 2019, pp. 310--318.
45.
L. W. Y Xu, G. Ambartsoumian, and P. Kuchment, Reconstructions in limited-view thermoacoustic tomography, Med. Phys., 31 (2004), pp. 724--733.
46.
E. Zhang, J. Laufer, and P. Beard, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., 47 (2008), pp. 561--577.
47.
L. Zhu, Y. Xie, J. Wang, and L. Xing, Scatter correction for cone-beam CT in radiation therapy, Med. Phys., 36 (2009), pp. 2258--2268.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 92 - 127
ISSN (online): 1936-4954

History

Submitted: 15 May 2020
Accepted: 22 October 2020
Published online: 26 January 2021

Keywords

  1. model correction
  2. inverse problems
  3. operator learning
  4. deep learning
  5. variational methods
  6. photoacoustic tomography

MSC codes

  1. 65K10
  2. 65F22
  3. 94A08
  4. 47A52

Authors

Affiliations

Carola-Bibiane Schönlieb

Funding Information

Philip Leverhulme Prize

Funding Information

Wellcome Innovator Award : RG98755

Funding Information

RISE : CHiPS, NoMADS

Funding Information

Cantab Capital Institute for the Mathematics of Information

Funding Information

Cambridge Center for Analysis

Funding Information

Academy of Finland https://doi.org/10.13039/501100002341 : 312123, 312342, 334817, 314411

Funding Information

Alan Turing Institute https://doi.org/10.13039/100012338

Funding Information

British Heart Foundation https://doi.org/10.13039/501100000274 : NH/18/1/33511

Funding Information

Jane ja Aatos Erkon Säätiö https://doi.org/10.13039/501100004012

Funding Information

Leverhulme Trust https://doi.org/10.13039/501100000275

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/M020533/1, WT101957

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/S026045/1, EP/T003553/1, EP/N014588/1

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/L016516/1

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/N022750/1, EP/T000864/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.