Abstract

The numerical integration over a planar domain that is cut by an implicitly defined boundary curve is an important problem that arises, for example, in unfitted finite element methods and in isogeometric analysis on trimmed computational domains. In this paper, we introduce a a very general version of the transport theorem for moving domains defined by implicitly defined curves and use it to establish an efficient and accurate quadrature rule for this class of domains. In numerical experiments it is shown that the method achieves high orders of convergence. Our approach is suited for high-order geometrically unfitted finite element methods as well as for high-order trimmed isogeometric analysis.

Keywords

  1. numerical quadrature
  2. unfitted finite element method
  3. immersed methods
  4. fictitious domain methods
  5. isogeometric analysis
  6. trimming
  7. transport theorem

MSC codes

  1. 53A04
  2. 65N30
  3. 65N85

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. Antolin, A. Buffa, and M. Martinelli, Isogeometric analysis on V-reps: First results, Comput. Methods Appl. Mech. Engrg., 355 (2019), pp. 976--1002.
2.
S. P. A. Bordas, E. N. Burman, M. G. Larson, and M. A. Olshanskii, eds., Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng. 121, Springer, Cham, 2017.
3.
A. Bressan and E. Sande, Approximation in FEM, DG and IGA: A theoretical comparison, Numer. Math., 143 (2019), pp. 923--942.
4.
A. Buffa, R. Puppi, and R. Vázquez, A minimal stabilization procedure for isogeometric methods on trimmed geometries, SIAM. J. Numer. Anal., 58 (2020), pp. 2711--2735, https://doi.org/10.1137/19M1244718.
5.
E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217--1220.
6.
E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104 (2015), pp. 472--501.
7.
E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal., 56 (2018), pp. 1525--1546, https://doi.org/10.1137/17M1154266.
8.
P. Cermelli, E. Fried, and M. E. Gurtin, Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces, J. Fluid Mech., 544 (2005), pp. 339--351.
9.
K. K. Choi and N.-H. Kim, Structural Sensitivity Analysis and Optimization \textup1: Linear Systems, Springer Science & Business Media, 2005.
10.
L. Coradello, P. Antolin, R. Vázquez, and A. Buffa, Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach, Comput. Methods Appl. Mech. Engrg., 364 (2020), 112925.
11.
T. Cui, W. Leng, H. Liu, L. Zhang, and W. Zheng, High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface, ACM Trans. Math. Software, 46 (2020), 3.
12.
F. de Prenter, C. Verhoosel, and E. van Brummelen, Preconditioning immersed isogeometric finite element methods with application to flow problems, Comput. Methods Appl. Mech. Engrg., 348 (2019), pp. 604--631.
13.
F. de Prenter, C. V. Verhoosel, E. van Brummelen, J. Evans, C. Messe, J. Benzaken, and K. Maute, Multigrid solvers for immersed finite element methods and immersed isogeometric analysis, Comput. Mech., 65 (2020), pp. 807--838.
14.
K. Deckelnick, C. M. Elliott, and T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal., 52 (2014), pp. 2137--2162, https://doi.org/10.1137/130948641.
15.
S. C. Divi, C. V. Verhoosel, F. Auricchio, A. Reali, and E. H. van Brummelen, Error-estimate-based adaptive integration for immersed isogeometric analysis, Comput. Math. Appl., 80 (2020), pp. 2481--2516.
16.
J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. Hughes, n-widths, sup--infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1726--1741.
17.
C. Giannelli, T. Kanduč, F. Pelosi, and H. Speleers, An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines, J. Comput. Appl. Math., 349 (2019), pp. 410--423.
18.
R. Glowinski, T.-W. Pan, and J. Periaux, A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Engrg., 111 (1994), pp. 283--303.
19.
R. Goldman, Curvature formulas for implicit curves and surfaces, Comput. Aided Geom. Design, 22 (2005), pp. 632--658.
20.
J. Hakenberg and U. Reif, On the volume of sets bounded by refinable functions, Appl. Math. Comput., 272 (2016), pp. 2--19.
21.
K. Höllig, U. Reif, and J. Wipper, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), pp. 442--462, https://doi.org/10.1137/S0036142900373208.
22.
T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 4135--4195.
23.
C.-K. Im and S.-K. Youn, The generation of 3D trimmed elements for NURBS-based isogeometric analysis, Int. J. Comput. Methods, 15 (2018), 1850065.
24.
M. Joulaian, S. Hubrich, and A. Düster, Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57 (2016), pp. 979--999.
25.
H.-J. Kim, Y.-D. Seo, and S.-K. Youn, Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 2982--2995.
26.
L. Kudela, N. Zander, S. Kollmannsberger, and E. Rank, Smart octrees: Accurately integrating discontinuous functions in \textup3D, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 406--426.
27.
L. Leidinger, M. Breitenberger, A. Bauer, S. Hartmann, R. Wüchner, K.-U. Bletzinger, F. Duddeck, and L. Song, Explicit dynamic isogeometric B-rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg., 351 (2019), pp. 891--927.
28.
T. Lin, Y. Lin, and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53 (2015), pp. 1121--1144, https://doi.org/10.1137/130912700.
29.
T. Ludescher, S. Gross, and A. Reusken, A multigrid method for unfitted finite element discretizations of elliptic interface problems, SIAM J. Sci. Comput., 42 (2020), pp. A318--A342, https://doi.org/10.1137/18M1203353.
30.
A. Mantzaflaris, F. Scholz, et al., G+Smo (Geometry + Simulation Modules) v0.8.1, http://gs.jku.at/gismo, 2020.
31.
B. Marussig, R. Hiemstra, and T. Hughes, Improved conditioning of isogeometric analysis matrices for trimmed geometries, Comput. Methods Appl. Mech. Engrg., 334 (2018), pp. 79--110.
32.
B. Marussig and T. Hughes, A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Comput. Methods Eng., 25 (2018), pp. 1059--1127.
33.
F. Massarwi, P. Antolin, and G. Elber, Volumetric untrimming: Precise decomposition of trimmed trivariates into tensor products, Comput. Aided Geom. Design, 71 (2019), pp. 1--15.
34.
R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal., 50 (2012), pp. 3134--3162, https://doi.org/10.1137/090763093.
35.
S. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47 (2011), pp. 535--554.
36.
A. Nagy and D. Benson, On the numerical integration of trimmed isogeometric elements, Comput. Methods Appl. Mech. Engrg., 284 (2015), pp. 165--185.
37.
T. S. Newman and H. Yi, A survey of the marching cubes algorithm, Computers & Graphics, 30 (2006), pp. 854--879.
38.
M. A. Olshanskii and D. Safin, Numerical integration over implicitly defined domains for higher order unfitted finite element methods, Lobachevskii J. Math., 37 (2016), pp. 582--596.
39.
N. Patrikalakis and T. Maekawa, Shape Interrogation for Computer Aided Design and Manufacturing, Springer, Berlin, Heidelberg, 2002.
40.
M. Ruess, D. Schillinger, A. Özcan, and E. Rank, Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries, Comput. Methods Appl. Mech. Engrg., 269 (2014), pp. 46--71.
41.
R. I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput., 37 (2015), pp. A993--A1019, https://doi.org/10.1137/140966290.
42.
D. Schillinger and M. Ruess, The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22 (2015), pp. 391--455.
43.
F. Scholz and B. Jüttler, Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces, Comput. Methods Appl. Mech. Engrg., 357 (2019), 112577.
44.
F. Scholz, A. Mantzaflaris, and B. Jüttler, First order error correction for trimmed quadrature in isogeometric analysis, in Advanced Finite Element Methods with Applications, Lect. Notes Comput. Sci. Eng. 128, Springer, Cham, 2019, pp. 297--321.
45.
Y. Sudhakar and W. A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comput. Methods Appl. Mech. Engrg., 258 (2013), pp. 39--54.
46.
V. Thiagarajan and V. Shapiro, Adaptively weighted numerical integration over arbitrary domains, Comput. Math. Appl., 67 (2014), pp. 1682--1702.
47.
V. Thiagarajan and V. Shapiro, Adaptively weighted numerical integration in the finite cell method, Comput. Methods Appl. Mech. Engrg., 311 (2016), pp. 250--279.
48.
C. Wang, X. Zhu, and X. Zhang, Quasi-conforming analysis method for trimmed CAD surfaces, Eur. J. Mech. A Solids, 81 (2020), 103959.
49.
T. Yang, A. Qarariyah, H. Kang, and J. Deng, Numerical integration over implicitly defined domains with topological guarantee, Commun. Math. Stat., 7 (2019), pp. 459--474.
50.
L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 2051--2067.
51.
X. Zhu, Z. Ma, and P. Hu, Nonconforming isogeometric analysis for trimmed CAD geometries using finite-element tearing and interconnecting algorithm, Proc. Inst. Mech. Engrs. Part C: J. Mech. Eng. Sci., 231 (2017), pp. 1371--1389.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2138 - 2162
ISSN (online): 1095-7170

History

Submitted: 28 May 2020
Accepted: 26 April 2021
Published online: 5 August 2021

Keywords

  1. numerical quadrature
  2. unfitted finite element method
  3. immersed methods
  4. fictitious domain methods
  5. isogeometric analysis
  6. trimming
  7. transport theorem

MSC codes

  1. 53A04
  2. 65N30
  3. 65N85

Authors

Affiliations

Funding Information

H2020 European Research Council https://doi.org/10.13039/100010663 : 694515

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media