Abstract

We present some results of geometric convergence of level sets for solutions of total variation denoising as the regularization parameter tends to zero. The common feature among them is that they make use of explicit constructions of variational mean curvatures for general sets of finite perimeter. Consequently, no additional regularity of the level sets of the ideal data is assumed, and in particular the subgradient of the total variation at it could be empty. In exchange, other restrictions on the data or on the noise are required. We consider two cases: characteristic functions with a parameter choice depending on the noise level, and noiseless generic data.

Keywords

  1. total variation
  2. sets of finite perimeter
  3. variational mean curvatures
  4. Hausdorff distance
  5. surfaces of prescribed mean curvature
  6. denoising

MSC codes

  1. 49Q20
  2. 53A10
  3. 68U10
  4. 49Q05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math. 178, Dekker, New York, 1996, pp. 15--50.
2.
Y. I. Alber and A. I. Notik, On some estimates for projection operators in Banach spaces, Comm. Appl. Nonlinear Anal., 2 (1995), pp. 47--55.
3.
F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal., 70 (2009), pp. 32--44, https://doi.org/10.1016/j.na.2007.11.032.
4.
L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Oxford University Press, New York, 2000.
5.
H. Attouch, G. Buttazzo, and G. Michaille, Variational Analysis in Sobolev and BV Spaces, 2nd ed., MOS-SIAM Ser. Optim., SIAM, Philadelphia, 2014, https://doi.org/10.1137/1.9781611973488.
6.
E. Barozzi, The curvature of a set with finite area, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1994), pp. 149--159.
7.
E. Barozzi, E. Gonzalez, and U. Massari, The mean curvature of a Lipschitz continuous manifold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14 (2003), pp. 257--277.
8.
E. Barozzi, E. Gonzalez, and I. Tamanini, The mean curvature of a set of finite perimeter, Proc. Amer. Math. Soc., 99 (1987), pp. 313--316, https://doi.org/10.2307/2046631.
9.
J. M. Borwein and J. D. Vanderwerff, Convex Functions: Constructions, Characterizations and Counterexamples, Encyclopedia of Math. Appl. 109, Cambridge University Press, Cambridge, UK, 2010, https://doi.org/10.1017/CBO9781139087322.
10.
J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis, CMS Books Math./Ouvrages Math. SMC, 20, Springer-Verlag, New York, 2005, https://doi.org/10.1007/0-387-28271-8.
11.
J. Bourgain and H. Brezis, On the equation ${\rm div}\, Y=f$ and application to control of phases, J. Amer. Math. Soc., 16 (2003), pp. 393--426, https://doi.org/10.1090/S0894-0347-02-00411-3.
12.
I. Bright and M. Torres, The integral of the normal and fluxes over sets of finite perimeter, Interfaces Free Bound., 17 (2015), pp. 245--259, https://doi.org/10.4171/IFB/341.
13.
V. Caselles, A. Chambolle, and M. Novaga, Total variation in imaging, in Handbook of Mathematical Methods in Imaging, O. Scherzer, ed., 2nd ed., Springer, New York, 2015, pp. 1455--1499, https://doi.org/10.1007/978-1-4939-0790-8_23.
14.
A. Chambolle, V. Duval, G. Peyré, and C. Poon, Geometric properties of solutions to the total variation denoising problem, Inverse Problems, 33 (2017), 015002, https://doi.org/10.1088/0266-5611/33/1/015002.
15.
A. Chambolle, M. Goldman, and M. Novaga, Fine properties of the subdifferential for a class of one-homogeneous functionals, Adv. Calc. Var., 8 (2015), pp. 31--42, https://doi.org/10.1515/acv-2012-0025.
16.
A. Chambolle and G. Thouroude, Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem, Netw. Heterog. Media, 4 (2009), pp. 127--152, https://doi.org/10.3934/nhm.2009.4.127.
17.
B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd ed., Appl. Math. Sci. 78, Springer, New York, 2008, https://doi.org/10.1007/978-3-642-51440-1.
18.
I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Appl. Math. 28, SIAM, Philadelphia, 1999, https://doi.org/10.1137/1.9781611971088.
19.
A. Ferriero and N. Fusco, A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), pp. 102--108, https://doi.org/10.3934/dcdsb.2009.11.103.
20.
G. B. Folland, Real Analysis, 2nd ed., Pure Appl. Math. (New York), John Wiley & Sons, New York, 1999.
21.
M. Goldman and M. Novaga, Volume-constrained minimizers for the prescribed curvature problem in periodic media, Calc. Var. Partial Differential Equations, 44 (2012), pp. 297--318, https://doi.org/10.1007/s00526-011-0435-6.
22.
J. A. Iglesias and G. Mercier, Influence of dimension on the convergence of level-sets in total variation regularization, ESAIM Control Optim. Calc. Var., 26 (2020), 52, https://doi.org/10.1051/cocv/2019035.
23.
J. A. Iglesias, G. Mercier, and O. Scherzer, A note on convergence of solutions of total variation regularized linear inverse problems, Inverse Problems, 34 (2018), 055011, https://doi.org/10.1088/1361-6420/aab92a.
24.
K. Jalalzai, Regularization of Inverse Problems in Image Processing, Ph.D. thesis, École Polytechnique, Palaiseau, France, 2012.
25.
B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225 (2006), pp. 103--118, https://doi.org/10.2140/pjm.2006.225.103.
26.
G. P. Leonardi and G. Saracco, Minimizers of the Prescribed Curvature Functional in a Jordan Domain with No Necks, preprint, https://arxiv.org/abs/1912.09462, 2019.
27.
Q. Li and M. Torres, Morrey spaces and generalized Cheeger sets, Adv. Calc. Var., 12 (2019), pp. 111--133, https://doi.org/10.1515/acv-2016-0050.
28.
E. H. Lieb and M. Loss, Analysis, 2n ed., Grad. Stud. Math. 14, AMS, Providence, RI, 2001, https://doi.org/10.1090/gsm/014.
29.
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, Cambridge Stud. Adv. Math. 135, Cambridge University Press, Cambridge, UK, 2012, https://doi.org/10.1017/CBO9781139108133.
30.
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss. 317, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/978-3-642-02431-3.
31.
E. Stredulinsky and W. P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7 (1997), pp. 653--677, https://doi.org/10.1007/BF02921639.
32.
I. Tamanini and C. Giacomelli, Approximation of Caccioppoli sets, with applications to problems in image segmentation, Ann. Univ. Ferrara Sez. VII (N.S.), 35 (1989), pp. 187--214 (1990).
33.
M. D. Wills, Hausdorff distance and convex sets, J. Convex Anal., 14 (2007), pp. 109--117.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1509 - 1545
ISSN (online): 1095-7154

History

Submitted: 7 July 2020
Accepted: 28 December 2020
Published online: 18 March 2021

Keywords

  1. total variation
  2. sets of finite perimeter
  3. variational mean curvatures
  4. Hausdorff distance
  5. surfaces of prescribed mean curvature
  6. denoising

MSC codes

  1. 49Q20
  2. 53A10
  3. 68U10
  4. 49Q05

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media