Multilinear Algebra for Distributed Storage
Abstract
Exact-repair regenerating codes (ERRCs) are a class of codes designed for distributed storage systems. A distributed storage system is a collection of devices that collaborate to store a large file. The collaboration is such that (a) if a user contacts sufficiently many devices, the user can recover the stored file; and (b) if one device fails, the remaining healthy devices can repair the failing device to maintain the properties (a) and (b). In this work, we focus on the trade-off among file size, device capacity, and the cost of repairing failing devices. We construct ERRCs with the same set of parameters as cascade codes. It has been conjectured that this set of parameters is optimal. Our construction relies on tensors and wedges and is purely algebraic. We discuss how the codes survive simultaneous device failures.
1. , Asymptotic interference alignment for optimal repair of MDS codes in distributed storage , IEEE Trans. Inform. Theory , 59 ( 2013 ), pp. 2974 -- 2987 , https://doi.org/10.1109/TIT.2013.2237752.
2. , Repair of RS codes with optimal access and error correction , in
Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), IEEE ,Washington, DC , 2020 , pp. 589 -- 594 , https://doi.org/10.1109/ISIT44484.2020.9174257.3. A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran, The Benefits of Network Coding for Peer-to-Peer Storage Systems, http://pbg.cs.illinois.edu/papers/coding-netcod07.pdf, 2007.
4. , Network coding for distributed storage systems , in
IEEE INFOCOM 2007, Proceedings of the 26th IEEE International Conference on Computer Communications, IEEE ,Washington, DC , 2007 , pp. 2000 -- 2008 , https://doi.org/10.1109/INFCOM.2007.232.5. , Network coding for distributed storage systems , IEEE Trans. Inform. Theory , 56 ( 2010 ), pp. 4539 -- 4551 , https://doi.org/10.1109/TIT.2010.2054295.
6. , Layered codes through multilinear algebra , presented at
SIAM Conference on Applied Algebraic Geometry , 2017 , https://meetings.siam.org/sess/dsp_talk.cfm?p=88132.7. , Johnson Graph Codes, preprint, https://arxiv.org/abs/1912.10388 , 2019 . , https://arxiv.org/abs/1912.10388.
8. , Multilinear Algebra for Minimum Storage Regenerating Codes, preprint, https://arxiv.org/abs/2006.16998 , 2020 . , https://arxiv.org/abs/2006.16998.
9. , Outer Bounds for Exact Repair Codes, preprint, https://arxiv.org/abs/1406.4852 , 2014 . , https://arxiv.org/abs/1406.4852.
10. , Shortened regenerating codes , IEEE Trans. Inform. Theory , 65 ( 2019 ), pp. 1000 -- 1007 , https://doi.org/10.1109/TIT.2018.2840995.
11. With a View Toward Algebraic Geometry , Grad. Texts in Math. 150 , Springer-Verlag , New York , 1995 , https://doi.org/10.1007/978-1-4612-5350-1.
12. , Determinant coding: A novel framework for exact-repair regenerating codes , IEEE Trans. Inform. Theory , 62 ( 2016 ), pp. 6683 -- 6697 , https://doi.org/10.1109/TIT.2016.2616137.
13. , Determinant codes with helper-independent repair for single and multiple failures , IEEE Trans. Inform. Theory , 65 ( 2019 ), pp. 5469 -- 5483 , https://doi.org/10.1109/TIT.2019.2904294.
14. , Cascade codes for distributed storage systems , IEEE Trans. Inform. Theory , 66 ( 2020 ), pp. 7490 -- 7527 , https://doi.org/10.1109/TIT.2020.3033338.
15. , Linear exact repair rate region of $(k + {1}, k, k)$ distributed storage systems: A new approach , in
Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), IEEE ,Washington, DC , 2015 , pp. 2061 -- 2065 , https://doi.org/10.1109/ISIT.2015.7282818.16. , New codes and inner bounds for exact repair in distributed storage systems , in
Proceedings of the 2014 IEEE International Symposium on Information Theory, IEEE ,Washington, DC , 2014 , pp. 1036 -- 1040 , https://doi.org/10.1109/ISIT.2014.6874990.17. , Multilinear Algebra , 2 nd ed., Universitext, Springer-Verlag, New York , Heidelberg , 1978 , https://doi.org/10.1007/978-1-4613-9425-9.
18. , $\epsilon$-MSR codes: Contacting fewer code blocks for exact repair , in
Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), IEEE ,Washington, DC , 2018 , pp. 2371 -- 2375 , https://doi.org/10.1109/ISIT.2018.8437576.19. , An outer bound on the storage-bandwidth tradeoff of exact-repair regenerating codes and its asymptotic optimality in high rates , in
Proceedings of the 2016 IEEE Information Theory Workshop (ITW), IEEE ,Washington, DC , 2016 , pp. 255 -- 259 , https://doi.org/10.1109/ITW.2016.7606835.20. , Algebra , 3 rd ed., Grad. Texts in Math. 211, Springer-Verlag , New York, 2002 , https://doi.org/10.1007/978-1-4613-0041-0.
21. , New bounds on the (n, k, d) storage systems with exact repair , in
Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), IEEE ,Washington, DC , 2015 , pp. 2056 -- 2060 , https://doi.org/10.1109/ISIT.2015.7282817.22. OEIS Foundation, Inc., The On-line Encyclopedia of Integer Sequences (Growth of Happy Bug Population in GCSE Maths Course Work Assignment), 2020, http://oeis.org/A053088.
23. , The storage-repair-bandwidth trade-off of exact repair linear regenerating codes for the case $d = k = n - 1$ , in
Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), IEEE ,Washington, DC , 2015 , pp. 859 -- 863 , https://doi.org/10.1109/ISIT.2015.7282577.24. , Codes for Distributed Storage, preprint, https://arxiv.org/abs/2010.01344 , 2020 . , https://arxiv.org/abs/2010.01344.
25. , Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction , IEEE Trans. Inform. Theory , 57 ( 2011 ), pp. 5227 -- 5239 , https://doi.org/10.1109/TIT.2011.2159049.
26. , Explicit construction of optimal exact regenerating codes for distributed storage , in
Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE ,Washington, DC , 2009 , pp. 1243 -- 1249 , https://doi.org/10.1109/ALLERTON.2009.5394538.27. , Advanced Modern Algebra. Part 1 , 3 rd ed., Grad. Stud. Math. 165, AMS, Providence, RI , 2015 , https://doi.org/10.1090/gsm/165.
28. , Outer bounds on the storage-repair bandwidth trade-off of exact-repair regenerating codes , Internat. J. Inform. Coding Theory , 3 ( 2016 ), pp. 255 -- 298 , https://doi.org/10.1504/IJICOT.2016.079498.
29. , An improved outer bound on the storage-repair-bandwidth tradeoff of exact-repair regenerating codes , in
Proceedings of the 2014 IEEE International Symposium on Information Theory, IEEE ,Washington, DC , 2014 , pp. 2430 -- 2434 , https://doi.org/10.1109/ISIT.2014.6875270.30. , Improved layered regenerating codes characterizing the exact-repair storage-repair bandwidth tradeoff for certain parameter sets , in
Proceedings of the 2015 IEEE Information Theory Workshop (ITW), IEEE ,Washington, DC , 2015 , pp. 1 -- 5 , https://doi.org/10.1109/ITW.2015.7133121.31. , Distributed storage codes with repair-by-transfer and nonachievability of interior points on the storage-bandwidth tradeoff , IEEE Trans. Inform. Theory , 58 ( 2012 ), pp. 1837 -- 1852 , https://doi.org/10.1109/TIT.2011.2173792.
32. , Interference alignment in regenerating codes for distributed storage: Necessity and code constructions , IEEE Trans. Inform. Theory , 58 ( 2012 ), pp. 2134 -- 2158 , https://doi.org/10.1109/TIT.2011.2178588.
33. , Cooperative regenerating codes , IEEE Trans. Inform. Theory , 59 ( 2013 ), pp. 7229 -- 7258 , https://doi.org/10.1109/TIT.2013.2274265.
34. , Characterizing the rate region of the (4,3,3) exact-repair regenerating codes , IEEE J. Selected Areas Commun. , 32 ( 2014 ), pp. 967 -- 975 , https://doi.org/10.1109/JSAC.2014.140516.
35. , A Note on the Rate Region of Exact-Repair Regenerating Codes, preprint, https://arxiv.org/abs/1503.00011 , 2015 . , https://arxiv.org/abs/1503.00011.
36. C. Tian, Solutions of Computed Information-Theoretic Limits, http://web.eecs.utk.edu/ ctian1/SCITL.html, 2016.
37. , Layered exact-repair regenerating codes via embedded error correction and block designs , IEEE Trans. Inform. Theory , 61 ( 2015 ), pp. 1933 -- 1947 , https://doi.org/10.1109/TIT.2015.2408595.
38. , Clay codes: Moulding MDS codes to yield an MSR code , in
Proceedings of the 16th USENIX Conference on File and Storage Technologies (FAST 18) ,Oakland, CA , 2018 , https://www.usenix.org/conference/fast18/presentation/vajha.39. , Existence and construction of capacity-achieving network codes for distributed storage , IEEE J. Selected Areas Commun. , 28 ( 2010 ), pp. 277 -- 288 , https://doi.org/10.1109/JSAC.2010.100217.
40. , Reducing repair traffic for erasure coding-based storage via interference alignment , in
Proceedings of the 2009 IEEE International Symposium on Information Theory, IEEE ,Washington, DC , 2009 , pp. 2276 -- 2280 , https://doi.org/10.1109/ISIT.2009.5205898.41. , Cooperative repair: Constructions of optimal MDS codes for all admissible parameters , IEEE Trans. Inform. Theory , 65 ( 2019 ), pp. 1639 -- 1656 , https://doi.org/10.1109/TIT.2018.2856206.
42. , Tensor Spaces and Exterior Algebra , Transl. Math. Monogr. 108 , AMS , Providence, RI , 1992 , https://doi.org/10.1090/mmono/108.